|
[1]P. Shao, Microscale Hemispherical Shell Resonating Gyroscopes, Dissertation, Georgia Institute of Technology, Atlanta, GA, USA., 2014. [2]C. Mayberry, Interface Circuits for Readout and Control of a Micro-Hemispherical Resonating Gyroscope, MS Dissertation, Georgia Institute of Technology, Atlanta, GA, USA, 2014. [3]C. Machover, Basics of Gyroscopes vol. 1, New York: John F. Rider Publishing, 1963. [4]R. H. Dixon and J. Bouchaud, Markets and Applications for MEMS Inertial Sensors, in Proceedings of the SPIE - The International Society for Optical Engineering, pp. 611306-611306-10, 2006. [5]G. Bryan, On the Beats in the Vibrations of a Revolving Cylinder or Bell, in Proceedings of the Cambridge Philosophical Society, pp. 101-111, 1890. [6]D. M. Rozelle, The Hemispherical Resonator Gyro: From Wineglass to the Planets, in 19th AAS/AIAA Space Flight Mechanics Meeting, pp. 1157-1178, 2009. [7]A. M. Shkel, C. Acar, and C. Painter, Two Types of Micromachined Vibratory Gyroscopes, in Sensors, 2005 IEEE, 2005. [8]J. L. Meriam and L.G. Kraige, “Engineering Mechanics Volume 2: Dynamics, Fourth Edition, John Wiley & Sons, New York, 1998. [9]M. F. Zaman, A. Sharma, H. Zhili, and F. Ayazi, A Mode-Matched Silicon-Yaw Tuning-Fork Gyroscope with Subdegree-Per-Hour Allan Deviation Bias Instability, Microelectromechanical Systems, Journal of, vol. 17, pp. 1526-1536, 2008. [10]J. Bernstein, S. Cho, A. T. King, A. Kourepenis, P. Maciel, M.Weinberg , A Micromachined Comb-Drive Tuning Fork Rate Gyroscope, in Micro Electro Mechanical Systems, 1993, MEMS 93, Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEEE., pp. 143-148, 1993. [11]S. M. SZE, Physics of Semiconductor Devices, JOHN WILEY, 2019. [12]K. MacConnell, P. Varoto, Vibration Testing: Theory and Practice, Hoboken, NJ: Wiley, 2008. [13]T. Su, S. H. Nitzan, P. Taheri-Tehrani, M. H. Kline, B. E. Boser and D. A. Horsley, Silicon MEMS Disk Resonator Gyroscope with an Integrated CMOS Analog Front-End, in IEEE Sensors Journal, vol. 14, no. 10, pp. 3426-3432, Oct., 2014. [14]Q. Li, D. Xiao, X. Zhou, Y. Xu, M. Zhuo, Z. Hou, 0.04 Degree-Per-Hour MEMS Disk Resonator Gyroscope with High-Quality Factor (510 k) and Long Decaying Time Constant (74.9 s), Microsystems & Nanoengineering, 4(1), 2018. [15]A. Kermany, J. Bennett, G. Brawley, W. Bowen, F. Iacopi, Factors Affecting the f × Q Product of 3C-SiC Microstrings: What Is the Upper Limit for Sensitivity, Journal of Applied Physics, 119(5), p.055304, 2016. [16]C. H. Ahn, S. Nitzan, E. J. Ng, V. A. Hong, Y. Yang, T. Kimbrell, T. W. Kenny, Encapsulated High Frequency (235 khz), High-Q (100 k) Disk Resonator Gyroscope with Electrostatic Parametric Pump, Appl. Phys. Lett. 105, 243504, 2014. [17]A. D. Challoner, H. H. Ge and J. Y. Liu, Boeing Disc Resonator Gyroscope, 2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014, Monterey, CA, pp. 504-514, 2014. [18]D. Kim, R. M. Closkey, A MEMS Vibratory Gyro with Mode-Matching Achieved by Resonator Mass Loading, In 2014 IEEE/ION Position, Location and Navigation Symposium (PLANS 2014); 5–8 May 2014; 499–503, Monterey, CA, 2014. [19]D. D. Gerrard, C. H. Ahn, I. B. Flader, Y. Chen, E. J. Ng, Y. Yang, T. W. Kenny, Q-Factor Optimization in Disk Resonator Gyroscopes Via Geometric Parameterization, in IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS 2016); 24–28 Jan 2016; 994–997, Shanghai, 2016. [20]S. Bashmal, R. Bhat, S. Rakheja, In-plane Free Vibration of Circular Annular Disks, Journal of Sound and Vibration, 322(1-2), 216-226, 2009. [21]R. B. Bhat, Frequencies of Rectangular Plates Using Characteristic Orthogonal Polynomials in Rayleigh–Ritz Method, Journal of Sound and Vibration, pp. 493-499, 1985. [22]C. Rajalingham, R. B. Bhat, Axisymmetric Vibration of Circular Plates and Its Analog in Elliptical Plates Using Characteristic Orthogonal Polynomials, Journal of Sound and Vibration, pp. 109-118, 1993. [23]C. Rajalingham, R. B. Bhat, Vibration of Elliptic Plates Using Characteristic Orthogonal Polynomials in the Rayleigh–Ritz Method, International Journal of Mechanical Sciences, 33, pp. 705-716, 1991. [24]F. Ayazi and K. Najafi, A HARPSS Polysilicon Vibrating Ring Gyroscope, Microelectromechanical Systems, Journal of, vol. 10, pp. 169-179, 2001. [25]J. Cho, J. A. Gregory, K. Najafi, High-Q, 3kHz Single-Crystal-Silicon Cylindrical Rate-Integrating Gyro (CING), in Micro Electro Mechanical Systems (MEMS) IEEE 25th International Conference on, 2012, pp. 172-175, 2012. [26]S. A. Ambartsumyan, Theory of Anisotropic Shells [in Russian], Moscow, 1961. [27]A. C. Ugural, Stresses in Plates and Shells, 2nd ed, McGraw-Hill, New York, 1999. [28]O.A. Bauchau, J.I. Craig, Kirchhoff Plate Theory, in: Bauchau O.A., Craig J.I. (eds) Structural Analysis. Solid Mechanics and Its Applications, vol 163. Springer, Dordrecht, 2009. [29]X. Wang, W. Wu, Z. Fang, B. Luo, Y. Li, Q. Jiang, Temperature Drift Compensation for Hemispherical Resonator Gyro Based on Natural Frequency. Sensors, 12(5), 6434-6446, 2012. [30]Commons.wikimedia.org, File:2nd Order Damping Ratios.svg - WikimediaCommons.[online]Availableat:https://commons.wikimedia.org/wiki/File:2nd_Order_Damping_Ratios.svg?uselang=zh-hant, 2019. [31]N. Yazdi, F. Ayazi, K. Najafi, Micromachined Inertial Sensors, Proceedings of the IEEE, 86(8), 1640-1659, 1998. [32]H. Johari, Micromachined Capacitive Silicon Bulk Acoustic Wave Gyroscopes, Unpublished doctoral dissertation, 2008. [33]A. Duwel, R. N. Candler, T. W. Kenny, M. Varghese, Engineering MEMS Resonators with Low Thermoelastic Damping, Microelectromechanical Systems, Journal of, vol. 15, pp. 1437-1445, 2006. [34]H. W. Lord and Y. Shulman, A Generalized Dynamical Theory of Thermoelasticity, Journal of the Mechanics and Physics of Solids, vol. 15, pp. 299-309, 1967. [35]R. Abdolvand, H. Johari, G. K. Ho, A. Erbil, and F. Ayazi, Quality Factor in Trench-refilled Polysilicon Beam Resonators, Microelectromechanical Systems, Journal of, vol. 15, pp. 471-478, 2006. [36]R. Lifshitz and M. L. Roukes, Thermoelastic Damping in Micro- and Nanomechanical Systems, Physical Review B, vol. 61, pp. 5600-5609, 2000. [37]Z. Hao, A. Erbil, and F. Ayazi, An Analytical Model for Support Loss in Micromachined Beam Resonators with In-Plane Flexural Vibrations, Sensors and Actuators A: Physical, vol. 109, pp. 156-164, 2003. [38]Z. Hao and F. Ayazi, Support Loss in the Radial Bulk-Mode Vibrations of Centersupported Micromechanical Disk Resonators, Sensors and Actuators A: Physical, vol. 134, pp. 582-593, 2007. [39]D. S. Bindel and S. Govindjee, Elastic PMLs for Resonator Anchor Loss Simulation, International Journal for Numerical Methods in Engineering, vol. 64, pp. 789-818, 2005. [40]J. Wang, J. Butler, T. Feygelson, and C. Nguyen, 1.51-GHz Nanocrystalline Diamond Micromechanical Disk Resonator with Material-Mismatched Msolating Support, in 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest, (Maastricht, Netherlands), pp. 641–644, 2004. [41]A. Samarao, G. Casinovi, and F. Ayazi, Passive TCF Compensation in High Q Silicon Micromechanical Resonators, in Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference on, pp. 116–119, 2010. [42]S. Prabhakar, and S. Vengallatore, Thermoelastic Damping in Bilayered Micromechanical Beam Resonators, Journal of Micromechanics and Microengineering, 17(3), pp.532-538, 2007. [43]F. Gerstle, Composite Materials Science and Engineering, K.K. Chawla (Springer-Verlag, 1987). MRS Bulletin, 13(12), pp.72-72, 1987. [44]J. Bishop and V. Kinra, Elastothermodynamic Damping in Laminated Composites, International Journal of Solids and Structures, 34(9), pp.1075-1092, 1997. [45]S. A.Chandorkar, M. Agarwal, R. Melamud, R. N. Candler, K. E. Goodson, T. W. Kenny, Limits of Quality Factor in Bulk-Mode Micromechanical Resonators, 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, 2008. [46]S. Ghaffari, S. Chandorkar, S. Wang, E. Ng, C. Ahn, V. Hong, Y. Yang and T. Kenny, Quantum Limit of Quality Factor in Silicon Micro and Nano Mechanical Resonators, Scientific Reports, 3(1), 2013. [47]H. Schober, Symmetry Characterization of Electrons and Lattice Excitations, EPJ Web of Conferences, vol. 22, p. 00012, 2012. [48]C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, Inc, USA, 1986. [49]T. O. Woodruff, and H. Ehrenreich, Absorption of Sound in Insulators, Phys. rev. 1961. [50]C. L. Choy, S. P. Wong, K.Young, Thermal-Expansion and Gruneisen Parameters for Anisotropic Solids, Phys. Rev. B 29, 1741–1747, 1984. [51]M. OÌz̤isÌʹik, Boundary Value Problems of Heat Conduction, Scranton: International Textbook Co, 1968. [52]M. OÌz̤isÌʹik, Heat conduction, New York: Wiley, 1993. [53]M. Higashiwaki, K. Sasaki, M. H. Wong, T. Kamimura, D. Krishnamurthy, A. Kuramata, S. Yamakoshi, Research and Development on Ga2O3 Transistors and Diodes, the 1st IEEE Workshop on Wide Bandgap Power Devices and Applications, Columbus, OH, pp. 100-103, 2013. [54]H. He, R. Orlando, M. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, First-Principles Study of the Structural, Electronic, and Optical Properties of Ga2O3 in Its Monoclinic and Hexagonal Phases, Physical Review B, 74(19), 2006. [55]M. Orita, H. Ohta, M. Hirano and H. Hosono, Deep-Ultraviolet Transparent Conductive β-Ga2O3 Thin Films, Applied Physics Letters, 77(25), pp.4166-4168, 2000. [56]R. Roy, V. Hill, and E. Osborn, Polymorphism of Ga2O3 and the System Ga2O3—H2O, Journal of the American Chemical Society, 74(3), pp.719-722, 1952. [57]V. Nikolaev, A. Pechnikov, S. Stepanov, V. Krymov, V. Maslov, V. Bougrov, A. Romanov, HVPE Growth of GaN Layers on Cleaved β-Ga2O3 Substrates, Key Engineering Materials, 674, 302-307, 2016. [58]H. Von Wenckstern, Group-III Sesquioxides: Growth, Physical Properties and Devices, Advanced Electronic Materials, 3(9), p.1600350, 2017. [59]S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga and I. Tanaka, Structures and Energetics of Ga2O3 Polymorphs, Journal of Physics: Condensed Matter, 19(34), p.346211, 2007. [60]H. He, M. Blanco, and R. Pandey, Electronic and Thermodynamic Properties of β-Ga2O3, Applied Physics Letters, 88(26), p.261904, 2006. [61]P. Kroll, R. Dronskowski, and M. Martin, Formation of Spinel-Type Gallium Oxynitrides: A Density-Functional Study of Binary And Ternary phases in The System Ga–O–N, Journal of Materials Chemistry, 15(32), p.3296, 2005. [62]H. Playford, A. Hannon, E. Barney, and R. Walton, Structures of Uncharacterised Polymorphs of Gallium Oxide from Total Neutron Diffraction. Chemistry - A European Journal, 19(8), pp.2803-2813, 2013. [63]M. Saurat and A. Revcolevschi, Elaboration Par La Methode De Zone Flottante De Monocristaux D'oxydes Refractaires, Rev. Int. Hautes Temper. et Refract., 8, 291-304, 1971. [64]J. A. Kohn, G. Katz, and J. D. Broder, β-Ga2O3 and Its Alumina Isomorphs’ θ-Al2O3, Am. Miner., 42, 398-408, 1957. [65]Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. Higashiwaki, D. Jena and T. Luo, Anisotropic Thermal Conductivity in Single Crystal β-Ga2O3 Oxide, Applied Physics Letters, 106(11), p.111909, 2015. [66]M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, Recent Progress in Ga2O3 Power Devices, Semiconductor Science and Technology, 31(3), p.034001, 2016. [67]S. Geller, Crystal Structure of β‐Ga2O3, the Journal of Chemical Physics, 33(3), pp.676-684, 1960. [68]K. Sasaki, A. Kuramata, T. Masui, E. Víllora, K. Shimamura and S. Yamakoshi, Device-Quality β-Ga2O3 Epitaxial Films Gabricated by Ozone Molecular Beam Epitaxy, Applied Physics Express, 5(3), p.035502, 2012. [69]M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates, Applied Physics Letters, 100(1), p.013504, 2012. [70]AZoM.com. Properties: Silica - Silicon Dioxide (SiO2). [online] Available at: https://www.azom.com/properties.aspx?ArticleID=1114 [71]Z. Cheng, M. Hanke, Z. Galazka, A. Trampert, Thermal Expansion of Single-Crystalline β-Ga2O3 from RT to 1200 K Studied by Synchrotron-Based High Resolution X-Ray Diffraction, Applied Physics Letters, 113(18), 182102, 2018. [72]A. Masolin, P. Bouchard, R. Martini, and M. Bernacki, Thermo-Mechanical and Fracture Properties in Single-Crystal Silicon, Journal of Materials Science, 48(3), pp.979-988, 2012. [73]M. Rais-Zadeh, V. Gokhale, A. Ansari, M. Faucher, D. Theron, Y. Cordier and L. Buchaillot, Gallium Nitride as an Electromechanical Material, Journal of Microelectromechanical Systems, 23(6), pp.1252-1271, 2014. [74]S. Luan, L. Dong and R. Jia, Analysis of the Structural, Anisotropic Elastic and Electronic Properties of β-Ga2O3 with Various Pressures, Journal of Crystal Growth, 505, pp.74-81, 2019. [75]W. Miller, K. Böttcher, Z. Galazka, and J. Schreuer, Numerical Modelling of the Czochralski Growth of β-Ga2O3. Crystals, 7(1), p.26, 2017. [76]S. T. Gulati, M. J. Edwards, ULE - Zero Expansion, Low Density, and Dimensionally Stable Material for Lightweight Optical Systems, Proc. SPIE 10289, Advanced Materials for Optics and Precision Structures: A Critical Review, 1028909, 1997.
|