跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/13 04:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林靜芬
研究生(外文):LIN, CHING-FEN
論文名稱:高品質p型氧化鋅薄膜於砷化鎵基板與碲化錳鎘薄膜於矽基板的特性分析
論文名稱(外文):Characteristics of High Quality p-type ZnO Thin Films on GaAs Substrates and Cd1-xMnxTe Thin Films on Silicon Substrates
指導教授:鄭永楨
指導教授(外文):CHENG, YUNG-CHEN
口試委員:賴盈至鄭永楨傅耀賢
口試委員(外文):LAI, YING-CHIHCHENG, YUNG-CHENFU, YAW-SHYAN
口試日期:2018-07-25
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:材料科學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:68
中文關鍵詞:氧化鋅碲化錳鎘原子層沉積分子束磊晶快速熱退火
外文關鍵詞:ZnOCdMnTeAtomic layer deposition (ALD)Molecular beam epitaxy (MBE)Rapid thermal annealing (RTA)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究分成兩個部分,第一部分研究爐管退火與快速熱退火溫度對砷化鎵基板上砷摻雜氧化鋅薄膜材料結構與光學特性的影響。研究結果顯示進行兩種退火機制(爐管退火與快速熱退火)的樣品有較好的薄膜品質,可降低薄膜殘餘應力,且電性皆呈現p型,快速熱退火溫度600 oC的樣品因容易形成AsZn-2VZn複合物等缺陷,雖載子濃度高達1019 cm-3,薄膜結構卻較差導致光學性質降低。爐管500 oC退火與快速熱退火550 oC兩種退火機制有效形成較佳品質的p型氧化鋅薄膜。

第二部分研究長晶時間與不同固態錳成長源加熱溫度對碲化錳鎘薄膜的影響,研究結果顯示長晶時間6小時樣品錳摻雜濃度較高,錳摻雜有助於降低碲化鎘薄膜碲-碲鍵結的缺陷,隨著錳成長源加熱溫度上升,薄膜成長結構愈好,橢圓偏振光譜擬合出的粗糙度跟著下降,顯微光激發螢光光譜的放光波長藍移量愈多,其中錳成長源溫度820 oC的碲化錳鎘薄膜放光波長可藍移至629 nm且碲-碲鍵缺陷最少,適合作為中間能隙太陽能電池用來吸收能量大於碲化鎘能隙的光子能量。
This study is divided into two parts. The first part is the study of the effect of furnace annealing and rapid thermal annealing (RTA) temperature on the structure and optical properties of arsenic-doped zinc oxide (ZnO:As) film on GaAs substrates. The results show that the samples with both furnace annealing and rapid thermal annealing have better film quality including reduction of the residual stress of the film and the formation of high p-type conductivity. Although the hole concentration of the sample with RTA 600 oC is as high as 1019 cm-3, the defects such as AsZn-2VZn complex are formed leading to relatively higher roughness and poor optical emission. Furnace annealing 500 oC and rapid thermal annealing 550 oC are superior condition for better quality of p-type ZnO: As thin film.
The second part is the study of the effect of crystal growth time and manganese precursor temperature on the cadmium manganese telluride (Cd1-xMnxTe) film grown on silicon (Si) substrates. The results show that higher doping concentration of manganese (Mn) is achieved in Cd1-xMnxTe for crystal growth time 6-hours. Manganese doping can help to reduce defects of Te-Te bond of the Cd1-xMnxTe film. Better crystalline structure, lower surface roughness and larger blue shifts of luminescence wavelength are realized when the precursor temperature of Mn is raised. For the precursor temperature of Mn at 820 °C, the luminescence wavelength can shift to 629 nm and has relatively low defect density of Te-Te bond. Cd1-xMnxTe is a suitable material as an intermediate energy gap material in the applications of Si-based solar cell.
摘要 i
Abstract ii
致謝 iii
目 次 iv
表目次 vi
圖目次 viii
第一章 緒論 1
1-1 氧化鋅材料簡介 2
1-2 碲化鎘材料簡介 4
1-3 原子層沉積技術 8
1-4 分子束磊晶技術 10
1-5 研究動機 11
第二章 實驗儀器原理 12
2-1 X射線繞射圖譜 12
2-2 顯微光激發螢光光譜 15
2-3 顯微拉曼散射光譜 17
2-4 橢圓偏振光光譜 19
2-5 掃描式電子顯微鏡 24
2-6 原子力顯微鏡 26
第三章 熱退火溫度對砷摻雜氧化鋅薄膜在砷化鎵(100)基板的影響 27
3-1 樣品製備方式與結構 27
3-2 實驗結果與討論 30
3-3 結論 43
第四章 錳成長源溫度對碲化錳鎘薄膜在矽(211)基板的影響 44
4-1 樣品製備方式與結構 44
4-2 長晶時間與摻雜錳元素的影響 45
4-3 錳成長源溫度的影響 53
4-4 結論 63
第五章 總結 64
參考文獻 65
[1] J.C. Fan, K.M. Sreekanth, Z. Xie, S.L. Chang, and K.V. Rao, "p-Type ZnO materials: Theory, growth, properties and devices," Progress in Materials Science, vol. 58, pp. 874-985, 2013.
[2] L. J. Brillson and Y. Lu, "ZnO Schottky barriers and Ohmic contacts," J. Appl. Phys, vol. 109, p. 121301, 2011.
[3] Y. Kozuka, A. Tsukazaki, and M. Kawasaki, "Challenges and opportunities of ZnO-related single crystalline heterostructures," Appl. Phys. Rev., vol. 1, p. 011303, 2014.
[4] M. W. G. Hoffmann, A. E. Gad, J. D. Pradesa, F. Hernandez-Ramirez, R. Fiz, H. Shen, and S. Mathur, "Solar diode sensor: Sensing mechanism and applications," Nano Energy, vol. 2, pp. 514-522, 2013.
[5] Y. Wang, X. W. Sun, G. K. L. Goh, H. V. Demir, H. Y. Yu, "Influence of Channel Layer Thickness on the Electrical Performances of Inkjet-Printed In-Ga-Zn Oxide Thin-Film Transistors," IEEE trans. electron devices., vol. 58, pp. 480-485, 2011.
[6] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, and Y. Lu, "Structural, optical, and surface acoustic wave properties of pitaxial ZnO films grown on (011̄2) sapphire by metalorganic chemical vapor deposition," J. Appl. Phys., vol. 85, p. 2595, 1999.
[7] T. Singh, T. Lehnen, T. Leuning, D. Sahu, and S. Mathur, "Thickness dependence of optoelectronic properties in ALD grown ZnO thin films," Appl. surf. sci., vol. 289, pp. 27-32, 2014.
[8] M. T. Chen, M. P. Lu, Y. J. Wu, J. Song, C. Y. Lee, and M. Y. Lu, "Near UV LEDs Made with in Situ Doped p-n Homojunction ZnO Nanowire Arrays," Nano Lett., vol. 10, pp. 4387-4393, 2010.
[9] A. B. Djurišić , A. M. C. Ng, and X. Y. Chen, "ZnO nanostructures for optoelectronics: Material properties and device applications," Prog. quantum electron., vol. 31, pp. 191-259, 2010.
[10] M. Yu, Y. Z. Long, B. S. and Z. Fan, "Recent advances in solar cells based on one-dimensional nanostructure arrays," Nanoscale, pp. 2783-2796, 2012.
[11] "Renewable Energy Scenario to 2040," p. 11, 2004.
[12] A. Luque and A. Martı´, "Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels," Phys. Rev. Lett., vol. 78, pp. 5014-5017, 1997.
[13] 邱宥浦、楊茹媛、翁敏航、陳文照、蘇炎坤, “第三代高效率太陽能電池技術與發展,” 光連雙月刊, 第68期, pp. 47-54, 2007.
[14] S. Girish Kumar and K. S. R. Koteswara Rao, "Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects," Energy Environ. Sci., vol. 7, pp. 45-102, 2013.
[15] K. L. Chopra, P. D. Paulson, and V. Dutta, "Thin-Film Solar Cells: An Overview," Prog. Photovolt: Res. Appl., vol. 12, pp. 69-92, 2004.
[16] D. V. Morgan and K. Board, An Introduction to Semiconductor Microtechnology, 2 ed., Chichester, West Sussex: John Wiley & Sons, Inc., 1990.
[17] 胡裕民, “III-V 稀磁性半導體薄膜之研究與發展,” 物理雙月刊, 第26冊, 第4期, pp. 587-598, 8 2004.
[18] I.S. Yahia, F. Yakuphanoglu, S. Chusnutdinow, T. Wojtowicz, and G. Karczewski, "Photovoltaic characterization of n-CdTe/p-CdMnTe/GaAs diluted magnetic diode," Curr. Appl. Phys., vol. 13, pp. 537-543, 2013.
[19] H. C. Chen, M. J. Chen, M. K. Wu, Y. C. Cheng, and F. Y. Tsai, "Low-Threshold Stimulated Emission in ZnO Thin Films Grown by Atomic Layer Deposition," IEEE J. Sel. Top. Quant. Electron., vol. 14, p. 1053, 2008.
[20] “奈米結構原子級薄膜製程技術—原子層沉積 (Atomic Layer Deposition, ALD) 系統研發成功,” 國家實驗研究院 儀器科技研究中心, 19 12 2007. [線上]. Available: https://www.itrc.narl.org.tw/Bulletin/News/ald.php.
[21] D. M. King, X. Liang, C. S. Carney, L. F. Hakim, P. Li, and A. W. Weimer, "Atomic Layer Deposition of UV-Absorbing ZnO Films on SiO2 and TiO2 Nanoparticles Using a Fluidized Bed Reactor," Adv. Funct. Mater., vol. 18, pp. 607-615, 2008.
[22] 游智傑, “原子層沉積技術應用於奈米薄殼,” 儀科中心簡訊, 第89期, pp. 12-13, 2008.
[23] G. Biasiol and L. Sorba, "Molecular Beam Epitaxy: Principles and Applications," in Crystal growth of materials for energy production and energy-saving applications, Pisa, 2001.
[24] T. Yamamoto and H. Katayama-Yoshida, "Solution Using a Codoping Method to Unipolarity for the Fabrication of p-Type ZnO," Jpn. J. Appl. Phys., vol. 38, pp. L166-L169, 1999.
[25] J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, and L. D. Chen, "Deposition and electrical properties of N–In codoped p-type ZnO films by ultrasonic spray pyrolysis," Appl. Phys. Lett., vol. 84, p. 541, 2004.
[26] K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, and S. J. Park, "Realization of -type ZnO thin films via phosphorus doping and thermal activation of the dopant," Appl. Phys. Lett., vol. 83, p. 63, 2003.
[27] J. H. Lim, C. K. Kang, K. K.Kim, I. K. Park, D. K. Hwang, and S. J. Park, "UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High-Temperature Radiofrequency Sputtering," Adv. Mater., vol. 18, pp. 2720-2724, 2006.
[28] S. Choopun, R. D. Vispute, W. Noch, A. Balsamo, R. P. Sharma, and T. Venkatesan, "Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire," Appl. Phys. Lett., vol. 75, p. 25, 1999.
[29] Y. C. Cheng, Y. S. Kuo, Y. H. Li, J. J. Shyue, and M. J. Chen, "Stable p-type ZnO films grown by atomic layer deposition on GaAs substrates and treated by post-deposition rapid thermal annealing," Thin Solid Films, pp. 5558-5561, 2011.
[30] 黃珮怡, 摻雜砷之氧化鋅薄膜的光學性質研究, 國立臺南大學材料科學系碩士班碩士論文, 2010.
[31] J. S. Wang, S. C. Tong, Y. H. Tsai, W. J. Tsai, C. S. Yang, Y. H. Chang, Y. C. Cheng, C. H. Wu, C. T. Yuan, and J. L. Shen, "Growing high-quality ternary CdMnTe epilayers by molecular beam epitaxy on Si substrates and its mechanism," J. Alloys Compd. , vol. 646, pp. 129-134, 2015.
[32] 王博彥, 研究(I)錳濃度對碲化錳鎘薄膜成長在矽基板的影響及(II)部份位壘層矽摻雜對八個週期氮化銦鎵氮化鎵量子井的效應, 國立臺南大學材料科學系碩士班碩士論文, 2015.
[33] J. O. Stoner & S. Chu, "X-Ray And Radio-Frequency Spectroscopy," Encyclopædia Britannica, Inc, [Online]. Available: https://www.britannica.com/science/spectroscopy/Energy-states-of-real-diatomic-molecules#ref80642.
[34] "X-ray diffraction," Encyclopædia Britannica, Inc, [Online]. Available: https://www.britannica.com/science/X-ray-diffraction.
[35] 張育唐, “X-光繞射與布拉格定律,” 國立臺灣大學化學系, 23 12 2011. [線上]. Available: http://highscope.ch.ntu.edu.tw/wordpress/?p=41141.
[36] T. Prasada Rao, M.C. Santhosh Kumar, S. Anbumozhi Angayarkanni, and M. Ashok, "Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis," J. Alloys Compd., vol. 485, pp. 413-417, 2009.
[37] L. B. Huang, S. Y. Lu, P. C. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, "Structural and optical verification of residual strain effect in single crystalline CdTe nanowires," Nano Res., vol. 7, pp. 228-235, 2014.
[38] A. R. Denton and N. W. Ashcroft, "Vegard's law," Phys. Rev. A, vol. 43, pp. 3161-3164, 1991.
[39] “全部儀器列表 - NCKU, 成功大學-微奈米科技研究中心,” 國立成功大學, [線上]. Available: http://cmnst.ncku.edu.tw/files/11-1023-13238.php?Lang=zh-tw.
[40] M. Kira, F. Jahnke, and S. W. Koch, "Quantum Theory of Secondary Emission in Optically Excited Semiconductor Quantum Wells," Phys. Rev. Lett., vol. 82, no. 17, p. 3544, 26 4 1999.
[41] K.-D. Gundermann, "Luminescence Excitation," Encyclopædia Britannica, Inc, [Online]. Available: https://www.britannica.com/science/luminescence#ref68944.
[42] K. Ismail, Fabrication and characterisation of SERS substrates through photo-deposition of Gold Nanoparticles, Trieste: The Abdus Salam International Center for Theoretical Physics The department of Condensed Matter Physics postgraduate Thesis, 2015.
[43] “Introduction to Raman Spectroscopy,” B&W Tek, [線上]. Available: http://bwtek.com/raman-introduction-to-raman-spectroscopy/.
[44] H. Fujiwara, Handbook of Optical Metrology Principles and Applications, T. Yoshizawa, Ed., New York: Taylor & Francis Group, LLC., 2008, pp. 641-659.
[45] R. F. Egerton, Physical Principles of Electron Microscopy An Introduction to TEM, SEM, and AEM, New York: Springer Science+Business Media, Inc., 2005.
[46] P. Eaton and P. West, Atomic Force Microscopy, New York: Oxford University Press, 2010.
[47] 李昀修, 利用原子層沉積技術成長p型氧化鋅之研究, 國立臺灣大學材料科學與工程學系碩士班碩士論文, 2009.
[48] B. Puchala and D. Morgan, "Atomistic modeling of As diffusion in ZnO," Phys. Rev. B, vol. 85, p. 064106, 2012.
[49] C. Y. Kung, S. L. Young, H. Z. Chen, M. C. Kao, L. Horng, Y. T. Shih, C. C. Lin, T. T. Lin and C. J. Ou, "Influence of Y-doped induced defects on the optical and magnetic properties of ZnO nanorod arrays prepared by low-temperature hydrothermal process," Nanoscale Res. Lett., vol. 7, p. 372, 2012.
[50] K. C. Kim, H. J. Kim, S. H. Suh, M. Carmody, S. Sivananthan, and J. S. Kim, "Metalorganic Chemical Vapor Deposition of CdTe(133) Epilayers on Si(211) Substrates," J. Electron. Mater., vol. 39, p. 863, 2010.
[51] L. F. Xi, K. H. Chua, Y. Y. Zhao, J. Zhang, Q. H. Xiong and Y. M. Lam, "Controlled synthesis of CdE (E = S, Se and Te) nanowires," RSC Adv., vol. 2, pp. 5243-5253, 2012.
[52] M. Imamura, A. Okada and T. Yamaguchi, "Magneto-optical properties of wider gap II-VI ZnMnTe and ZnMnCoTe films," J. Appl. Phys., vol. 99, p. 08M706, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊