跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/22 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪珮純
研究生(外文):Pei-Chun Hong
論文名稱:銅基形狀記憶合金(銅-鋁-鎳)的製備與顯微結構分析
論文名稱(外文):Preparation and Microstructures of the Copper-Based (Cu–Al–Ni) Shape Memory Alloy
指導教授:林明宏林明宏引用關係
指導教授(外文):Ming-Hong Lin
口試委員:林明宏謝世峯鍾育霖陳順隆
口試委員(外文):Ming-Hong LinShih-Feng hsiehYu-Lin ChungSung-Long Chen
口試日期:2015-07-24
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:72
中文關鍵詞:形狀記憶合金銅鋁鎳熱彈性麻田散體轉換
外文關鍵詞:Shape memory alloysCu–Al–NiThermally induced martensitic phase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:728
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:1
現今,形狀記憶合金在工作輸出密度上的表現以及其形狀記憶效應跟擬彈性是眾所皆知的,故此在微機電系統中微小構件的研究發展上也備受關注,而銅基記憶合金在麻田散體轉換溫度遲滯窄小範圍寬以及高耐腐蝕性、高導電性,因此在記憶合金薄膜之應用上,成為主要研究目標。
在製備上目前之研究以採用VAR電弧融煉方式居多,本研究將另外利用電子束熔煉方式製備相同參數的形狀記憶合金。本研究採用Cu-Al-Ni合金作為材料,用以探討銅基記憶合金的製備、結構與性質分析 。以SEM、EPMA做顯微組織觀測,並以XRD與TEM進行相變化和結構分析等研究,此外以DSC分析升溫過程中的反應觀測。
實驗結果顯示,所配製的合金因為熱處理、組成的影響,會導致析出物/第二相產生,其麻田散體變態溫度的提高主要跟析出物(Cu9Al4)的形成有關係。而SEM結合EPMA、XRD發現母相為DO3結構並且有2H、M18R兩相共存的現象,而TEM結果證實M18R結構的存在,並且於過程中發現逐漸析出的結晶相現象,說明介穩態的基地相經由電子束能量注入導致析出現象,進而造成合金的記憶效應劣化。

The work output density of shape memory alloys (SMA) are well recognized for their shape memory effect (SME) and pseudo-elastic(PE). Because of that, these alloys have attracted much attention to be used in micro/nano electromechanical systems(MEMS/ NEMS). The SMA thin films are confirmed that the shape memory properties with narrow hysteresis and a wide range of martensitic transformation temperature (Ms) of copper-based alloys thin films, towards applications for micro-actuators.
Several aspects have been considered, such as fabrication procedures, characterization of the microstructure and shape memory properties. In the past, the arc-melted has to be in the majority. In this work the fabrication procedures are both of arc-melted and electron beam-melted for Cu-Al-Ni alloy bulks. Furthermore, The microstructures and the crystal structures of the Cu-Al-Ni SMA were studied by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and differential scanning calorimetry (DSC).
In this experimental procedure show that the precipitate and the second phase due to influence of fabrication procedures and Composition, in which the both of two kinds of martensites, i.e. 2H and 18R , coexisting adjacent to each other in the specimen were observed. The change between the 18R and 2H stacking sequences was investigated by diffraction technique. Further experiments revealed that the β1´ martensite structure is actually of the M18R type (modified 18R) monoclinic one with its β angle very close to 90°. There is results showed the emergence of precipitates, indicating precipitation phenomenon form from metastable phase by electron beam energy of TEM. In the SMA, these precipitates affect the transformation temperatures (Ms, Mf, As, Af) and deteriorate the shape memory recoveries of these specimens.
Therefore, this study investigate the processing-property and microstructure evolution of the SMA alloys. The purpose of this work is evaluating to the effectiveness of e-beam evaporation deposition for SMA thin films and comparative study composition of different on copper-based SMA. Theoretical analysis of the optimal fabrication procedures of Cu-based SMA and the nature by the method in this work can be obtained. This results will have some contribution of our study on the development of micro-electromechanical systems.

摘要 I
ABSTRACT II
目錄 V
圖目錄 VII
表目錄 X
第一章 前言 1
1.1 研究背景 1
第二章 文獻回顧 6
2.1 麻田散體相變態(MARTENSITE TRANSFORMATION) 6
2.1.1 一般型麻田散體相變態 6
2.1.2 熱彈性型麻田散體相變態 7
2.2 熱麻田散體變態 9
2.2.1 自我調適機能與變體的生成 10
2.3 銅基記憶合金的結晶學 13
2.3.1 麻田散體相之結晶特色 15
2.4 形狀記憶效應 19
第三章研究方法 22
3.1 實驗材料配製以及熔煉 24
3.2 熱處理程序 30
3.3 分析及性質測試之儀器性能介紹 31
3.3.1 熱分析量測 31
3.3.2 電子微探儀(EPMA) 32
3.3.3 X-RAY粉末繞射儀(XRD) 33
3.3.4 場發掃描式電子顯微鏡(FE-SEM) 35
3.3.5 穿透式電子顯微鏡(TEM) 37
第四章結果與討論 39
4.1 SEM顯微組織觀察 39
4.2 EPMA組成分析 44
4.3 XRD結構分析 54
4.4 TEM顯微組織觀察 62
4.5 DSC 68
第五章結論及未來研究方向 70
5.1 結論 70
5.2 未來研究方向 71
參考文獻 72

1.S. Miyazaki, K. Otsuka,“Development of Shape Memory Alloys”ISIJ Int., 29 (1989) : 353–377.
2.Ashour, Elsayed A., and Badr G. Ateya.“Electrochemical behaviour of a copper-aluminium alloy in concentrated alkaline solutions.” Electrochimica acta 42.2 (1997) : 243-250.
3.Tu, K. N.“Recent advances on electromigration in very-large-scale-integration of interconnects.”Journal of applied physics 94.9 (2003) : 5451-5473.
4.轟 恆彥,“機械の研究”,第四十卷,第一號,195,1988
5.楊鎮嘉,“六足仿生機器人嵌入式控制器之研發”,臺灣大學機械工程學研究所,碩士論文,2006
6.陳尚義,“形狀記憶合金應用於微型致動器之研究”,國立勤益科技大學精密機械與製造科技系,碩士論文, 2007
7.Kurdyumov, G. V., and L. G. Khandros.“On the "Thermoelastic" Equilibrium on Martensitic Transformations.” Dokl. Akad. Nauk SSSR. Vol. 66. No. 2. (1949).
8.Chang, L. C., and T. A. Read.“Plastic deformation and diffusionless phase changes in metals-The gold-cadmium beta-phase.” Transactions of the American Institute of Mining and Metallurgical Engineers 191.1 (1951) : 47-52.
9.Tong, H. C., and C. M. Wayman.“Marmem effect in β'AgCd alloys.”Scripta Metallurgica 7.2 (1973) : 215-221.
10.Krishnan, R. V., and L. C. Brown.“Pseudoelasticity and the strain-memory effect in an Ag-45 at. pct Cd alloy.”Metallurgical Transactions 4.2 (1973) : 423-429.
11.Arneodo, W., and M. Ahlers.“The martensitic transformation in β Cu-Zn.”Acta Metallurgica 22.12 (1974) : 1475-1480.
12.Dvorak, I., and E. B. Hawbolt.“Transformational elasticity in a polycrystalline Cu-Zn-Sn alloy.”Metallurgical Transactions A 6.1 (1975) : 95-99.
13.Pascual, R., et al. “Acoustic emission and the martensitic transformation of β brass.”Scripta Metallurgica 9.1 (1975) : 79-84.
14.Belkahla, S., H. Flores Zuniga, and G. Guenin.“Elaboration and characterization of new low temperature shape memory Cu-Al-Be alloys.”Materials Science and Engineering: A 169.1 (1993) : 119-124.
15.Wayman, C. M.“Some applications of shape-memory alloys.”JOM 32.6 (1980) : 129-137.
16.Otsuka, K., and K. Shimizu.“Pseudoelasticity and shape memory effects in alloys.”International Metals Reviews 31.1 (1986) : 93-114.
17.McD, L.“Schetky, Shape memory alloys.”Scientific American 241 (1979) : 74.
18.Buehler, William J., J. V. Gilfrich, and R. C. Wiley.“Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi.”Journal of applied physics 34.5 (1963) : 1475-1477.
19.舟久保熙康編,賴耿陽譯著,“形狀記憶合金”,復漢出版社,1984。
20.Delaey, L., Krishnan, R. V., Tas, H., & Warlimont, H.“Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations. ”Journal of Materials Science, 9(9), (1974) : 1521-1535.
21.Funakubo, Hiroyasu, and J. B. Kennedy.“Shape memory alloys.”Gordon and Breach, xii+ 275, 15 x 22 cm, Illustrated (1987).
22.Tadaki, T., K. Otsuka, and K. Shimizu.“Shape memory alloys.”Annual Review of Materials Science 18.1 (1988) : 25-45
23.K. Otsuka, C. Wayman (Eds.),“Shape memory materials.”Cambridge University Press, Cambridge (1998) : 27–48
24.Buehler, William J., and Frederick E. Wang.“A summary of recent research on the Nitinol alloys and their potential application in ocean engineering.” Ocean Engineering 1.1 (1968) : 105-120.
25.Warlimont, H., and L. Delaey.“Martensitic Transformations in Cu- Ag- and Au-Based Alloys.”Prog. Mater. Sci., 18, 160 p (1974).
26.Olson, G. B., and Morris Cohen.“Thermoelastic behavior in martensitic transformations.”Scripta Metallurgica 9.11 (1975) : 1247-1254.
27.Bhattacharya, Kaushik.“Self-accommodation in martensite.”Archive for rational mechanics and analysis 120.3 (1992) : 201-244.
28.Saburi, T., and C. M. Wayman.“Crystallographic similarities in shape memory martensites.”Acta Metallurgica 27.6 (1979) : 979-995.
29.TAN, S. & Xu, H., “Observations on a CuA1Ni single crystal, Cont. Mech. Thermodynamics”2 (1990) : 241-244.
30.Tas, H., L. Delaey, and A. Deruyttere.“The self-accommodating character of the β1 copper-aluminum martensite.”Metallurgical Transactions 4.12 (1973) : 2833-2840.
31.Ericksen, J. L.“Nonlinear elasticity of diatomic crystals.”Mechanics and Mathematics of Crystals: Selected Papers of JL Ericksen (2005) : 7.
32.Ericksen, J. L.“On the symmetry of deformable crystals.”Archive for Rational Mechanics and Analysis 72.1 (1979) : 1-13.
33.Ericksen, J. L.“Some phase transitions in crystals.”Archive for Rational Mechanics and Analysis 73.2 (1980) : 99-124.
34.Ericksen, J. L.“Continuous martensitic transitions in thermoelastic solids.”Journal of Thermal Stresses 4.2 (1981) : 107-119.
35.Ericksen, J. L.“Phase Transformations and Material Instabilities in Solids, edited by ME Gurtin Academic Press.”New York (1984) : 61-77.
36.Bhattacharya, Kaushik.“Wedge-like microstructure in martensites.”Acta Metallurgica et Materialia 39.10 (1991) : 2431-2444.
37.Okamoto, K., Ichinose, S., Morii, K., Otsuka, K., & Shimizu, K. “Crystallography of β1→ γ1′stress-induced martensitic transformation in a Cu-Al-Ni alloy.”Acta metallurgica 34.10 (1986) : 2065-2073.
38.S. C., Y. Murakami, and L. Delaey.“Remarks on ordering in ternary β Cu-Zn- Al alloys.”Scripta Metallurgica 12.5 (1978) : 435-438.
39.Dunne, D. Po, and N. F. Kennon.“The structure of martensite in a Cu-Zn-Al Alloy.”Scripta Metallurgica 16.6 (1982) : 729-734.
40.Chipman, D., and B. E. Warren.“X‐Ray Measurement of Long Range Order in β‐Brass.”Journal of Applied Physics 21.7 (1950) : 696-697.
41.Otsuka, K., Ohba, T., Tokonami, M., & Wayman, C. M.“New description of long period stacking order structures of martensites in β-phase alloys.”Scripta metallurgica et materialia 29.10 (1993) : 1359-1364.
42.Delaey, L., and M. Chandrasekaran.“Comments on New description of long period stacking order structures of martensites in β-Phase alloys” by K. Otsuka, T. Ohba, M. Tokonami and CM Wayman. Scripta metallurgica et materialia 30.12 (1994) : 1605-1610.
43.Saburi, T., S. Nenno, and C. M. Wayman.“Shape memory mechanisms in alloys.”ICOMAT 1979. Martensitic Transformations (1979) : 619-632.
44.Sato, A. K. I. K. A. Z. U., et al.“Shape memory effect in γ⇄ ϵ transformation in Fe-30Mn-1Si alloy single crystals.”Acta Metallurgica 30.6 (1982) : 1177-1183.
45.Sun, L., and W. M. Huang.“Nature of the multistage transformation in shape memory alloys upon heating.”Metal Science and Heat Treatment 51.11 (2009) : 573-578.
46.Hartl, Darren J., and Dimitris C. Lagoudas.“Aerospace applications of shape memory alloys.”Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 221.4 (2007) : 535-552.
47.Jani, Jaronie Mohd, et al.“A review of shape memory alloy research, applications and opportunities.”Materials & Design 56 (2014) : 1078-1113.
48.D.C. Lagoudas.“Shape memory alloys: modeling and engineering applications”(1st ed.)Springer, New York (2010).
49.Duerig, T. W., and A. R. Pelton.“Ti-Ni shape memory alloys.”Materials properties handbook: titanium alloys (1994) : 1035-1048.
50.Villars, Pierre, Alan Prince, and Hiroaki Okamoto. “Handbook of ternary alloy phase diagrams. ”Asm Intl, ( 1995).
51.Sarı, Uğur, and İlhan Aksoy.“Electron microscopy study of 2H and 18R martensites in Cu–11.92 wt% Al–3.78 wt% Ni shape memory alloy.”Journal of alloys and compounds 417.1 (2006) : 138-142.
52.Recarte, V., Pérez-Sáez, R. B., San Juan, J., Bocanegra, E. H., and Nó, M. L. “Influence of Al and Ni concentration on the martensitic transformation in Cu-Al-Ni shape-memory alloys.” Metallurgical and Materials Transactions A 33.8 (2002) : 2581–2591.
53.Sakamoto, Hidekazu, and Ken'ichi Shimizu.“Effect of heat treatments on thermally formed martensite phases in monocrystalline Cu-Al-Ni shape memory alloy.”ISIJ international 29.5 (1989) : 395-404.
54.Nishiyama, Z.“Martensitic Transformation”Academic, New York. (1978).
55.Lovey, F. C., Van Tendeloo, G., Van Landuyt, J., & Amelinckx, S.“ The high resolution electron microscopy of twin interfaces in 2H and 18R martensites of Cu-Al alloys. ”Scripta metallurgica, 19(10), (1985) : 1223-1228.
56.Kayali, N., S. Özgen, and O. Adigüzel.“The influence of ageing on martensite morphology in shape memory CuZnAl alloys.”Le Journal de Physique IV 7.C5 (1997) : C5-317.
57.Aydogdu, Yildirim, Ayse Aydogdu, and Osman Adiguzel. “Self-accommodating martensite plate variants in shape memory CuAlNi alloys.”Journal of materials processing technology 123.3 (2002) : 498-500.
58.Sugimoto, S., H. Sakamoto, T. Hara, and H. Tsuchiya,“The Effect of Grain Constraint, Heat Treatment and Compositional Change on the Behavior of Martensitic Transformations in Alloys with the Composition Near Cu-13AI-4Ni-IZn (Mass%),”(ICOMAT 95), Journal de Physique lV, vol. C8, no. 5, (1995) : 925-930.
59.Liu, Delu, H. Hashimoto, and T. Ko.“Electron microscopy study of martensite in Cu–11.2 wt% Al–3 wt% Ni.”Journal of materials science 32.6 (1997): 1657-1663.
60.Sarı, Uğur, and İlhan Aksoy.“Micro-structural analysis of self-accommodating martensites in Cu–11.92 wt% Al–3.78 wt% Ni shape memory alloy.”Journal of Materials Processing Technology 195.1 (2008) : 72-76.
61.Duggin, M. J., and W. A. Raghinger.“The nature of the martensite transformation in a coppernickel-aluminium alloy.” Acta metallurgica 12.5 (1964): 529-535.
62.Otsuka, Kazuhiro, and Ken'ichi Shimizu.“Morphology and Crystallography of Thermoelastic γ' Cu-Al-Ni Martensite.”Japanese Journal of Applied Physics 8.10 (1969) : 1196.
63.Otsuka, K., K. Nakai, and K. Shimizu.“Structure dependence of superelasticity in Cu-Al-Ni Alloy.”Scripta metallurgica 8.8 (1974) : 913-918.
64.Otsuka, K., H. Sakamoto, and K. Shimizu.“Two stage superelasticity associated with successive martensite-to-martensite transformations.”Scripta Metallurgica 10.11 (1976) : 983-988.
65.Otsuka, K., M. Takahashi, and K. Shimizu.“Single interface martensitic transformation in Cu-Al-Ni alloy.”Metallurgical and Materials Transactions B 4.8 (1973) : 2003-2006.
66.Ganesh, K. Jai, & Suresh, A.“Fabrication and Characterization of Cu-14Al-3.5Ni Shape Memory Alloys by Ingot Metallurgy.”In MRS Proceedings, Cambridge University Press. 888, (2005, January) : 0888-V06.
67.Kennon, N. F., D. P. Dunne, and L. Middleton.“Aging effects in copper-based shape memory alloys.”Metallurgical Transactions A 13.4 (1982) : 551-555.
68.高崇源, ‘’時效對 Cu-Al-Be 形狀記憶合金之影響’’ 臺灣大學材料科學與工程學研究所,碩士論文,1995。
69.Lojen, Gorazd, et al.“Microstructure of rapidly solidified Cu–Al–Ni shape memory alloy ribbons.” Journal of Materials Processing Technology 162 (2005) : 220-229.
70.王文雄,‘’銅-鋁-鎳/鈹合金之形狀記憶效應及相變態研究’’ 臺灣大學材料科學與工程學研究所,碩士論文,2003。
71.Calvert, L. D., and P. Villars.“Pearson’s handbook of crystallographic data for intermetallic phases.”ASM, Materials Park, OH (1991).
72.Chakravorty, S., and C. M. Wayman.“Electron microscopy of internally faulted Cu-Zn-Al martensite.”Acta Metallurgica 25.9 (1977) : 989-1000.
73.Otsuka, k. Wayman, C. M. ,“shape memory materials.” (1982)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top