跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 05:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯宗佑
研究生(外文):Zong-You Hou
論文名稱:適用於電池管理系統之高精準度之CMOS溫度及電流感測器
論文名稱(外文):CMOS-based High-precision Temperature and Current Sensor for Battery Management Systems
指導教授:王朝欽
指導教授(外文):Chua-Chin Wang
學位類別:博士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:94
中文關鍵詞:溫度感測器電池管理系統電流感測器高壓線性校正
外文關鍵詞:temperature sensorcurrent sensorHVlinear calibrationBMS.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
電壓、電流以及溫度為估計電池電量的重要參數,因此設計高精準度之感測
器為一重要關鍵。在本論文中提出以CMOS 為製程之一高精準度之溫度感測器及
一個高精準度之電流感測器,其精準度均可達到約1 % 之誤差。
本篇論文第二章中提出的第一個感測器電路設計為適用於[-5 oC,120 oC] 之
高精準溫度感測器,其技術特點為提出一具有溫度範圍選擇電路,使得除了校準
方法的分析之外,熱敏電阻線性電路可以根據感測溫度範圍自動切換到相應的校
準迴路,這解決了單一熱敏電阻線性電路適用感測溫度範圍過小的問題。此外,
本章提出之高精準溫度感測器也證實具有高線性度。根據晶片量測結果證實,在
溫度範圍為[-5 oC,120 oC] 下,此晶片輸出電壓範圍為1.96 V 到4.15 V,最大線性
誤差為1.4 %,以及最大溫度誤差為1.1 oC。
第三章則使用全差分放大器的高壓雙向電流感測器,以偵測雙向流動之大電
流(安培等級)。全差分放大器經由迴授路徑,可平衡高壓電流感測器的雙向輸入
電壓。因此,所提出的設計可以藉由輸出電壓和參考電壓之間的電壓差,以推測
出感測電流的方向和大小。根據本章晶片量測結果,證實可操作於電壓8∼14 V,
且最大感測誤差在0.7 % 以內。
上述之兩個感測器電路設計,使本論文之溫度感測器與電流感測器在感測精
準度上,皆成為目前世界在CMOS 製程領域中領先者之一。
Voltage, current, and temperature are three important parameters for estimating the
state of charge (SOC). Therefore, high-precision sensors for these 3 physical measures
play a key role in a battery management system (BMS). This dissertation presents a
high-precision temperature sensor and a current sensor using CMOS technologies for BMS
to achieve accurate SOC estimation in the future.
In Chapter 2, a high-precision CMOS temperature sensor with an auto-selective
design is developed to overcome the narrow temperature range problem of a single
thermistor temperature sensor, while high linearity output is ensured. The proposed design
is featured with a temperature range selection circuit allowing a thermistor linear circuit
to switch automatically to a corresponding calibration loop accordingly. Measurement
results obtained in a thermal chamber confirm that the output voltage ranges from 1.96 V
to 4.15 V with a maximum linearity error of ≤ 1.4 % and temperature error of ≤ 1.1 oC
across a temperature range of -5 oC to 120 oC.
A high-voltage (HV) bidirectional current sensor using a fully-differential amplifier
(FDA) is demonstrated in Chapter 3 to equalize the bidirectional input voltages of a HV
current sensor via a feedback loop. This enables the proposed design to detect the direction
and magnitude of the current based on the difference between the output voltage and
a reference voltage. Detailed analysis of the proposed HV current sensor is presented.
Measurement results obtained using battery test equipment proved that the proposed
sensor achieves maximum error ≤ 0.7 % in the range of 8∼14 V.
中文摘要iii
Abstract iv
List of Figures vii
List of Tables xi
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Temperature Sensors . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Current Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . 18
Chapter 2 High-Precision CMOS Temperature Sensor with Thermistor
Linear Calibration 21
2.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Architecture of Proposed Temperature Sensor . . . . . . . . . . . . . . . 21
2.2.1 Thermistor Linearity Calibration Circuit with Switches . . . . . . 22
2.2.2 Temperature Range Auto-Selection Circuit (TRASC) . . . . . . . 26
2.3 Implementation and Measurement . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Chip Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
v
Chapter 3 CMOS Bidirectional High-Voltage Current Sensor 48
3.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 High-Voltage Bidirectional Current Sensor . . . . . . . . . . . . . . . . . 50
3.2.1 Fully-Differential Amplifier . . . . . . . . . . . . . . . . . . . . 52
3.2.2 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Implementation and Measurements . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Chip Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Chapter 4 Conclusion and Future Work 65
4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.1 New Temperature Sensor Design . . . . . . . . . . . . . . . . . . 66
4.2.2 New Current Sensor Design . . . . . . . . . . . . . . . . . . . . 66
Bibliography 69
[1] Kaohsiung Marine Institute, ”A schematic diagram of the AUV,” Internet: http://
www.st.nkmu.edu.tw/main.php?mod=custom_page&site_id=5&page_id=39.
[2] J. Bergman, ”Temperature of Ocean Water,” Internet: https://
www.windows2universe.org/earth/Water/temp.html, Feb. 2011.
[3] T. Dong, J. Li, and H. Dai, ”Analysis on the influence of measurement precision
of the battery management system on the state of charge estimation,” in Proc.
Asia-Pacific Power and Energy Engineering Conf. (APPEEC), pp. 1-5, Mar. 2010.
[4] L. Shidong, Z. Bin, L, Gengzhen, S. Pingyi, and L. Jia, ”Optimization of BMS
in motor vehicle insurance,” in Proc. Inter. Conf. on Smart Grid and Electrical
Automation (ICSGEA), pp. 7071-7076, Aug. 2016.
[5] L. Buccolini, A. Ricci, C. Scavongelli, G. D.-Gentile., S. Orcioni, and M. Conti,
”Battery management system (BMS) simulation environment for electric vehicles,”
in Proc. IEEE 16th Inter. Conf. on Environment and Electrical Engineering (EEEIC),
pp. 1-6, Jun. 2016.
[6] A123 SYSTEM, ”DataSheet: ANR26650m1-B,” 2012.
[7] V. Sangwan, A., Sharma, R. Kumar, and A. K. Rathore, ”Equivalent circuit model
parameters estimation of Li-ion battery: C-rate, SOC and temperature effects,” in
Proc. IEEE Inter. Conf. on Power Electronics, Drives and Energy Syst. (PEDES),
pp. 1-6, Dec. 2012.
69
[8] H. Jing and Y. Huimei, ”SOC estimation of li-ion battery based on temperature
combined model,” in Proc. IEEE Conf. on Industrial Electronics and Applications
(IEA), pp. 794-799, Jun. 2015.
[9] R. M. S. Santos, C. L. G. de S. Alves, E. C. T. Macedo, J. M. M. Villanueva, L.
V. Hartmann, and S. Y. C. Catunda, ”Lead acid battery SoC estimation based on
extended Kalman filter method considering different temperature conditions,” in
Proc. IEEE Inter. Instrum. and Meas. Technology Conf. (IMTC), pp. 1-6, May 2015.
[10] G. Bosson, F. Guttman, and L. M. Simmons, ”Relationship between temperature
and resistance of a thermistor,” J. Application Physical (JAP), vol. 21, no. 12, pp.
1267-1268, Dec. 1950.
[11] TDK, NTC thermistors for temperature measurement, Tokyo, JPN, 2018.
[12] E. O. Doebelin, Measurement Systems: Application and Design, NY, USA, 1990.
[13] A. R. Sarkar, D. Dey and S. Munshi, ”Linearization of NTC thermistor characteristic
using op-amp based inverting amplifier,” IEEE Sens. J. (SJ), vol. 13, no. 12, pp.
4621-4626, Dec. 2013.
[14] S. Bandyopadhyay, A. Das, A. Mukherjee, D. Dey, B. Bhattacharyya, and S. Munshi,
”A linearization scheme for thermistor-based sensing in biomedical studies,” IEEE
Sens. J. (SJ), vol. 16, no. 3, pp. 603-609, Feb. 2016.
[15] V. N. Kumar and K. V. L. Narayana and A. Bhujangarao and S. Sankar,
”Development of an ann-based linearization technique for the VCO thermistor
circuit,” IEEE Sens. J. (SJ), vol. 15, no. 2, pp. 886-894, Feb. 2015.
70
[16] Z. P. Nenova and T. G. Nenov, ”Linearisation circuit of the thermistor connection,”
IEEE Trans. Instrum. Meas., vol. 58, no. 2, pp. 441-449, Feb. 2009.
[17] D. Sonowal and M. Bhuyan, ”Linearizing thermistor characteristics by piecewise
linear interpolation in real time FPGA,” Inter. Conf. Advances in Computing,
Communications and Informatics (ICACCI), pp. 1976-1980, Aug. 2013.
[18] A. Burke, ”Linearizing thermistors with a single resistor,” Electronics, vol. 54, no.
11, pp. 151-154, Jun. 1981.
[19] Automotive research & testing center (ARTC), Operation and safety manual of
electric vehicle, Taipei, Taiwan, 2015.
[20] X. Cheng, Z. Zhang, F. Li, and S. Liu, ”Study of magnetic properties for iron core in
a closed loop hall current sensor,” in Proc. 13th Inter. Conf. on Electronic Packaging
Technology and High Density Packaging (ICEPT-HDP), pp. 575-578, Aug. 2012.
[21] X. Yang, H. Liu, Y. Wang, Y. Wang, G. Dong, and Z. Zhao, ”A giant magneto
resistive (GMR) effect based current sensor with a toroidal magnetic core as flux
concentrator and closed-loop configuration,” IEEE Trans. Applied Superconductivity
(TAS), vol. 47, no. 6, pp. 1249-1252, Dec. 2000.
[22] T. Chow, Introduction to Electromagnetic Theory: A Modern Perspective, U.S.:
Jones and Bartlett Learning, 2006.
[23] E.-R. Motto and J.-F. Donlon, ”IGBT module with user accessible on-chip current
and temperature sensors,” in Proc. 2012 Twenty-Seventh Annual IEEE Applied
Power Electronics Conf. and Exposition (APEC), pp. 176-181, Feb. 2012.
71
[24] Y.-C. Liang, G.-S. Samudra, A. J. D. Lim, and P.-H. Ong, ”Accurate current sensor
for lateral IGBT smart power integration,” IEEE Trans. Power Electronics (TPE),
vol. 18, no. 5, pp. 1238-1243, Sep. 2003.
[25] S.-H. Shalmany, D. Draxelmayr, and K. A. A. Makinwa, ”A micropower battery
current sensor with ±0.03% (3 σ) inaccuracy from -40 to +85 oC,” in Proc. IEEE
Inter. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), pp. 386-387,
Feb. 2013.
[26] T. Wang, D. Chen, and R. Geiger, ”Multi-site on-chip current sensor for
electromigration monitoring,” in Proc. 2011 IEEE 54th Inter. Midwest Symp. on
Circuits and Syst. (MWSCAS), pp. 1-4, Aug. 2011.
[27] M. Du and H. Lee, ”An Integrated speed and accuracy-enhanced CMOS current
sensor with dynamically biased shunt feedback for current-mode buck regulators,”
IEEE Trans. Circuits Syst.-I, Reg. Papers (TCAS-I), vol. 57, no. 10, pp. 2804-2814,
Oct. 2010.
[28] M.-H. Huang and K.-H. Chen, ”Single-inductor multi-output (SIMO) DC-DC
converters with high light-load efficiency and minimized cross-regulation for
portable devices,” IEEE J. of Solid-State Circuits (JSCC), vol. 44, no. 4, pp.
1099-1111, Apr. 2009.
[29] M.-P. Chan and P. K. T. Mok, ”On-chip digital inductor current sensor for monolithic
digitally controlled DC-DC converter,” IEEE Trans. Circuits Syst.-I, Reg. Papers
(TCAS-I), vol. 60, no. 5, pp. 1232-1240, May 2013.
[30] Texas Instruments, INA212-Q1 Datasheet, Dallas, TX, 2013.
72
[31] H. Forghani-zadeh and G. Rincon-Mora, ”Current-sensing techniques for DC-DC
converters,” in Proc. 2002 Midwest Symp. on Circuits and Syst. (MWSCAS), pp.
577-580, Aug. 2002.
[32] C. Chang, ”Combined lossless current sensing for current mode control,” in Proc.
2004 IEEE Applied Power Electronics Conf. and Exposition (APEC), pp. 404-410,
Feb. 2004.
[33] Maxim, MAX4172 Datasheet, [Online]. Internet: https://
www.maximintegrated.com/en/app-notes/index.mvp/id/746.
[34] C. F. Lee and P. Mok, ”On-chip current sensing technique for CMOS monolithic
switch-mode power converters,” in Proc. 2002 IEEE Inter. Symp. on Circuits and
Syst. (ISCAS), pp. 265-268, May 2002.
[35] J. S. Steinhart and S. R. Hart, “Calibration curves for thermistors,”Deep-Sea Res.
Oceanogr. Abstr. (DSROA), vol. 15, no. 4, pp. 497-503, Aug. 1968.
[36] EPCOS, B57164K Datasheet, [Online]. Internet: http://www.mouser.com/ds/2/136/
LeadedDisks__B57164__K164-81893.pdf.
[37] TDK, B57861S Datasheet, [Online]. Internet: http://www.mouser.com/ds/2/400/
NTC_Mini_sensors_S861-525582.pdf.
[38] EPCOS, B57164K Datasheet, [Online]. Internet: https:// eecs.oregonstate.edu/
education/docs/datasheets/10kThermistor.pdf.
[39] Terchy Environmental Technology Ltd., Terchy Datasheet MHK-120, Nantou city,
Taiwan.
73
[40] B. Calvo, C. Azcona, N. Medrano, and S. Celma, ”A low-cost VFC for low-power
sensor interfaces,” in Proc. IEEE Inter. Symp. Industrial Electronics (ISIE), pp.
379-383, Jul. 2010.
[41] K. P. S. Rana, V. Kumar, and T. Prasad, ”Enhancing linearity in thermistor
signal conditioning circuit using linear numerical search,” IEEE Inter. Conf. Power
Electronics, Intelligent Control and Energy Syst. (ICPEICES), pp. 1-6, Jul. 2016.
[42] R. S. Concepcion, F. R. G. Cruz, F. A. A. Uy, J. M. E. Baltazar, J.
N. Carpio, and K. G. Tolentino, ”Triaxial MEMS digital accelerometer and
temperature sensor calibration techniques for structural health monitoring of
reinforced concrete bridge laboratory test platform,” in Proc. IEEE Inter. Conf.
Humanoid, Nanotechnology, Information Technology, Communication and Control,
Environment and Management (HNICEM), pp. 1-6, Dec. 2017.
[43] S. S. Karipott, P. M. Veetil, B. D. Nelson, R. E. Guldberg, and K. G. Ong, ”An
embedded wireless temperature sensor for orthopedic implants,” IEEE Sens. J. (SJ),
vol. 18, no. 3, pp. 1265-1272, Feb. 2018.
[44] A. Kobayashi, K. Ikeda, Y. Ogawa, H. Kai, M. Nishizawa, K. Nakazato, and K.
Niitsu, ”Design and experimental verification of a 0.19 V 53 μW 65 nm CMOS
integrated supply-sensing sensor with a supply-insensitive temperature sensor and an
inductive-coupling transmitter for a self-powered bio-sensing system using a biofuel
cell,” IEEE Trans. Biomed. Circuits Syst. (TBCS), vol. 11, no. 6, pp. 1313-1323, Dec.
2017.
[45] ST Microelectronics, Precision temperature sensors LM335, Geneva, Switzerland,
2008.
74
[46] LINEAR TECHNOLOGY, Precision High Side Current Sense Amplifiers,
[Online]. Internet: http:// www.analog.com/ media/ en/ technical-documentation/
product-selector-card/currentsense.pdf.
[47] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill College, pp.
308-340, Aug. 2000.
[48] H. Wang, X. Hu, Q. Liu, G. Zhao, and D. Luo, ”An on-chip high-speed current sensor
applied in the current-mode DC-DC converter,” IEEE Trans. Power Electronics
(TPE), vol. 29, no. 9, pp. 4479-4484, Sep. 2014.
[49] W.-J. Lu, S.-S. Wang, M.-Y. Tseng, and C.-C. Wang, ”A capacity monitoring system
with HV current sensor and calibrated current estimation approach,” in Proc. IEEE
Region 10 Conf. (TENCON), pp. 1-4, Nov. 2015.
[50] K. Itoh, M. Muraguchi, and T. Endoh, ”High accurate and low loss current sensing
method with novel current path narrowing method for DC-DC converters and
its demonstration,” in Proc. 2016 IEEE Inter. Telecommunications Energy Conf.
(INTELEC), pp. 23-27, Oct. 2016.
[51] N. Mitrovic, R. Enne, and H. Zimmermann, ”An integrated current sensing circuit
with comparator function for a buck DC-DC converter in HV-CMOS,” in Proc. IEEE
Inter. Conf. on Electronics, Circuits and Syst. (ICECS), pp. 656-659, Dec. 2016.
[52] Y. Jiang, M. Swilam, S. Asar, and A. Fayed, ”An accurate sense-FET-based inductor
current sensor with wide sensing range for buck converters,” in Proc. IEEE Inter.
Symp. on Circuits and Syst. (ISCAS), pp. 1-4, May 2018.
75
[53] LEM, LA 03-PB Datasheet, [Online]. Internet: https:// media.digikey.com/ pdf/
Data%20Sheets/LEM%20USA%20PDFs/LA%2003%20..%2020-PB.pdf.
[54] R. Jacob Baker, CMOS Circuit Design, Layout, and Simulation Third Edition, New
Jersey: John Wiley & Sons, 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊