跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 11:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張元泰
研究生(外文):Yuan-Tai Chang
論文名稱:沉積島狀銀膜於光學薄膜上並應用於表面增強拉曼散射研究
論文名稱(外文):Deposition of silver island film on an optical thin film for surface enhanced Raman scattering
指導教授:任貽均
指導教授(外文):Yi-Jun Jen
口試委員:任貽均成柏翰黃逸帆陳學禮
口試日期:2015-07-09
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
中文關鍵詞:侷域表面電漿共振、島狀銀膜、表面增強拉曼散射
外文關鍵詞:Localized surface plasmon resonancemetal island thin filmSurface enhanced Raman scattering
相關次數:
  • 被引用被引用:1
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
金屬奈米結構中的侷域表面電漿共振(LSPR),被認為是表面增強拉曼散射之主要機制。本研究透過光學薄膜導納概念,在不連續銀膜底下加入金屬層及SiO2薄膜,透過金屬層及SiO2薄膜使表面電場最大化,藉此提升不連續銀膜之電場增強效果。樣品利用掃描式電子顯微鏡觀察其表面結構,可看出其結構為隨機島狀分佈,而島狀結構之間擁有許多微小間隙,在此間隙間會產生侷域表面電漿共振。經由影像處理後,利用有限時域差分法(FDTD)模擬不連續銀膜之電場增強效果,發現經設計後的不連續銀膜表面增強拉曼散射平均增強因子可達104。在表面增強拉曼散射量測中,相較於直接在矽基板上沉積不連續銀膜,此結構擁有較強之表面增強拉曼散射訊號。此外,本文也探討調整SiO2膜厚對於表面增強拉曼訊號之影響,並觀察到SiO2膜厚從50nm到150nm時,表面增強拉曼訊號亦隨之增強。
The localized surface plasmon resonance in the metal nanostructure is generally believed to be the main mechanisms of the SERS enhancement. In this work, optical thin films underneath a silver island film were designed to electric field on the surface. We deposited the Ag mirror and the SiO2 film on the silicon substrate then deposited the silver island films on the surface of SiO2 film. Through this method the surface electric field will be enhanced. The surface morphology of each sample was imaged by SEM. A lot of narrow gaps between the silver islands were observed. The electric field distributions of these silver island films are simulated by the finite difference time domain method and the areal SERS enhancement factor can reach to 104. In the SERS measurement, compared with the silver island films deposited on a bare Si substrate, the silver island films on the optical thin film has stronger SERS signals. The SERS signal was gradually increased with the thickness of SiO2 layer from 50 nm to 150 nm.
目錄
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vi
第一章 緒論與文獻回顧 1
1.1 前言與研究動機 1
1.2 文獻回顧 2
1.2.1各種SERS基板 2
1.2.2奈米粒子近場模擬與不連續金屬薄膜 9
第二章 原理與方法 20
2.1表面增強拉曼散射 20
2.2表面電漿共振 22
2.3有限時域差分法 25
2.4光學導納 27
2.4.1膜矩陣 27
2.4.2導納軌跡 28
2.4.3金屬導納軌跡 29
第三章 實驗步驟與量測系統 31
3.1樣品設計 31
3.2電子槍蒸鍍系統 31
3.3樣品製鍍 32
3.4表面增強拉曼光譜量測 33
第四章 實驗結果與討論 34
4.1樣品設計及分析 34
4.1.1 設計及導納分析 34
4.1.2 奈米銀粒之有限時域差分法模擬 35
4.2島狀銀膜表面結構 38
4.3島狀銀膜近場模擬 41
4.4島狀銀膜拉曼光譜量測 46
第五章 結論 48
參考文獻 50
參考文獻

[1] Dentcho A. Genov, Andrey K. Sarychev, and Vladimir M. Shalaev,2003,“Growth, morphology, and optical and electrical properties of semicontinuous metallic films,"physical review b 67, 035318.
[2] Wenbo Hou, Wei Hsuan Hung, Prathamesh Pavaskar, Alain Goeppert, Mehmet Aykol, and Stephen B. Cronin, 2011,“Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions,"ACS Catal, 929–936.
[3] A.-s. Grimault , A. Vial, m. Lamy De La Chapelle, 2006, “Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method,"Appl. Phys. B 84, 111–115.
[4] F. Brouers, S. Blacher, A. N. Lagarkov, Andrey K. Sarychev, Patrice Gadenne, Vladimir M. Shalaev, 1997,“Theory of giant Raman scattering from semicontinuous metal films,"physical review b volume 55, number 19.
[5] S. Horikoshi, N. Matsumoto, Y. Omata, T. Kato, 2014,“Growth of Au nanoparticle films and the effect of nanoparticle shape on plasmon peak wavelength,"Journal of Applied Physics 115, 193506.
[6] J. Guicheteau, S. Christesen, D. Emge, A. Hyre, L. Argue,2006,“Bacteria Classification via Surface Enhanced Raman Spectroscopy and Principal Component Analysis,"Aberdeen Proving Ground, MD, USA 21010-5424
[7] Fei Yan, David L. Stokes, Musundi B. Wabuyele, Guy D. Griffin, Arpad A. Vass, Tuan Vo-Dinh, 2008,“Surface-enhanced Raman scattering (SERS) detection for chemical and biological agents,"Oak Ridge, TN 37831-6101
[8] Tuan Vo-Dinh, Fei Yan and Musundi B. Wabuyele, 2005, “Surface-enhanced Raman scattering for medical diagnostics and biological imaging,"J. Raman Spectrosc. 36: 640–647.
[9] Jesse V Jokerst, Adam J. Cole, Sarah E. Bohndiek, and Sanjiv S. Gambhir, 2014, “Gold nanorods combine photoacoustic and Raman imaging for detection and treatment of ovarian cancer,"Proc. of SPIE Vol. 8943, 894366
[10] Y.-J. Liu, Z.-Y. Zhang, Q. Zhao, R. A. Dluhy, Y.-P. Zhao, 2009, “Surface Enhanced Raman Scattering from an Ag Nanorod Array Substrate: The Site Dependent Enhancement and Layer Absorbance Effect,"J. Phys. Chem. C , 113, 9664–9669
[11] G. Santoro, S. Yu, M. Schwartzkopf, P. Zhang, Sarathlal Koyiloth Vayalil, J. F. H. Risch, M. A. Rübhausen, M. Hernández, C. Domingo, S. V. Roth, 2014, “Silver substrates for surface enhanced Raman scattering: Correlation between nanostructure and Raman scattering enhancement,"Applied Physics Letters 104, 243107
[12] Yandong Wang, Nan Lu, Wentao Wang, Lingxiao Liu, Lei Feng, Zhoufang Zeng, Haibo Li, Weiqing Xu, Zijian Wu, Wei Hu, Yanqing Lu, and Lifeng Chi, 2013, “Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays,"Nano Research, 6(3): 159–166
[13] Cosmin Farcau, Simion Astilean, 2010, “Mapping the SERS Efficiency and Hot-Spots Localization on Gold Film over Nanospheres Substrates,"J. Phys. Chem. C, 114, 11717–11722
[14] Shuming Nie, Steven R. Emory, 1997, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,"SCIENCE z VOL. 275
[15] Vladimir P. Drachev, Mark Thoreson, Eldar Khaliullin, Andrey K. Sarychev, Dongmao Zhang, Dor Ben-Amotz, Vladimir M. Shalaev, 2003, “Semicontinuous silver films for protein sensing with SERS,"Proceedings of SPIE Vol. 5221

[16] Zhao, R. A. Dluhy, Y.-P. Zhao, 2009, “Surface Enhanced Raman Scattering from an Ag Nanorod Array Substrate: The Site Dependent Enhancement and Layer Absorbance Effect,"J. Phys. Chem. C, 113, 9664–9669
[17] Yang-Chun Lee, En-Yun Wang, Yu-Lun Liu, and Hsuen-Li Chen, 2014, “Using Metal-less Structures To Enhance the Raman Signals of Graphene by 100-fold while Maintaining the Band-to-Band Ratio and Peak Positions Precisely,"Chem. Mater, 27, 876−884
[18] Lianming Tong, Hong Wei, Shunping Zhang, Zhipeng Li and Hongxing Xu, 2013, “Optical properties of single coupled plasmonic nanoparticles,"Phys. Chem. Chem. Phys., 15, 4100-4109
[19] Min Wei Chen &; Yuan-Fong Chau &; Din Ping Tsai, 2008, “Three-Dimensional Analysis of Scattering Field Interactions and Surface Plasmon Resonance in Coupled Silver Nanospheres,"Plasmonics (2008) 3:157–164
[20] J¨org P. Kottmann and Olivier J.F. Martin, 2001, “Plasmon resonant coupling in metallic nanowires,"optics express 656
[21] Encai Hao and George C. Schatz, 2004, “Electromagnetic fields around silver nanoparticles and dimers,"Journal of Chemical Physics 120, 357
[22] Petra Heger, Olaf Stenzel, Norbert Kaiser, 2006, “Design and fabrication of selective thin film absorbers on the basis of silver island films,"Vacuum‘s Best VIP
[23] U.K. Chettiar, P. Nyga, M.D. Thoreson, A.V. Kildishev, V.P. Drachev , V.M. Shalaev, 2010, “FDTD modeling of realistic semicontinuous metal films,"Appl Phys B 100: 159–168
[24] Prathamesh Pavaskar, I-Kai Hsu, Jesse Theiss, Wei Hsuan Hung, and Stephen B. Cronin, 2012, “A microscopic study of strongly plasmonic Au and Ag island thin films,"Journal of Applied Physics 113, 034302
[25] C.V. Raman, K.S. Krishnan, 1928, “A new type of secondary radiation,”OPTICS Nature, 121 (3048) ,pp. 501-502
[26] J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, 2005, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlledmetallic particles in regular arrays,"PHYSICAL REVIEW B 72, 033407
[27] P. F. Liao and M. B. Stern, 1982, “Surface-enhanced Raman scattering on gold and aluminum particle arrays,"optics express 656
[28] 邱國斌、蔡定平, 2006, 「金屬表面電漿簡介」, 物理雙月刊, 28 卷, 2 期
[29] 曾賢德, 2010, 「金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作」, 物理雙月刊, 32 卷, 2 期
[30] Jörg P. Kottmann and Olivier J. F. Martin, 2001, “Retardation-induced plasmon resonances in coupled nanoparticles,"optics letters Vol. 26, No. 14
[31] Yuan-Fong Chau • Han-Hsuan Yeh, 2011, “A comparative study of solid-silver and silver-shell nanodimers on surface plasmon resonances,"J Nanopart Res 13:637–644
[32] M. Futamata, Y. Maruyama, and M. Ishikawa, 2003, “Local Electric Field and Scattering Cross Section of Ag Nanoparticles under Surface Plasmon Resonance by Finite Difference Time Domain Method,"J. Phys. Chem. B , 107, 7607-7617
[33] Mark I. Stockman, 2004, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,"PhysRevLett.93.137404
[34] Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, 2008, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,"the journal of chemical physics 128, 094705
[35] K. S. Yee, 1966, “Numerical solution of initial boundary value problems involving Maxwell&;#39;s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. AP-14, pp. 302-307
[36] 李正中,光學薄膜與鍍膜技術,臺北,藝軒圖書出版社,2006,第292頁
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top