|
[1] T.-Y. Tseng and S. M. Sze, Nonvolatile Memories: Materials, Devices and Applications. CA, USA: American Scientific Publishers. [2] J.Chen, “Selective operation of a multi-state non-volatile memory system in a binary mode,” U.S. Patent No. 6,456,528. 24. [3] R.Bez, E.Camerlenghi, A.Modelli, andA.Visconti, “Introduction to flash memory,” Proc. IEEE, vol. 91, no. 4, pp. 489–502, Apr.2003. [4] J. F.Scott andC. A.Paz de Araujo, “Ferroelectric Memories,” Science (80-. )., vol. 246, no. 4936, pp. 1400–1405, Dec.1989. [5] H.-S. P.Wong et al., “Phase Change Memory,” Proc. IEEE, vol. 98, no. 12, pp. 2201–2227, Dec.2010. [6] P.Naoi, Katsuhiko and Simon, “New Electrochemical, Materials and New Configurations for Advanced Capacitors,” J. Electrochem. Soc., vol. 17, pp. 0013–4651, 2008. [7] S.Bandiera andB.Dieny, “Magnetic Random Access Memories,” in Nanomagnetism: Applications and Perspectives, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017, pp. 55–80. [8] E.Titus, R.Krishna, J.Grcio, M.Singh, A.Luis, andR.G, “Carbon Nanotube Based Magnetic Tunnel Junctions (MTJs) for Spintronics Application,” in Electronic Properties of Carbon Nanotubes, InTech, 2011. [9] S.Yu, “Neuro-Inspired Computing With Emerging Nonvolatile Memorys,” Proc. IEEE, vol. 106, no. 2, pp. 260–285, Feb.2018. [10] J. J.Yang, D. B.Strukov, and D. R.Stewart, “Memristive devices for computing,” Nat. Nanotechnol., vol. 8, no. 1, pp. 13–24, Dec.2012. [11] S.Yu, Y.Wu, R.Jeyasingh, D.Kuzum, andH.-S. P.Wong, “An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation,” IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2729–2737, Aug.2011. [12] M.Janousch, G. I.Meijer, U.Staub, B.Delley, S. F.Karg, andB. P.Andreasson, “Role of Oxygen Vacancies in Cr-Doped SrTiO3 for Resistance-Change Memory,” Adv. Mater., vol. 19, no. 17, pp. 2232–2235, Sep.2007. [13] A.Belmonte et al., “Analysis of the Excellent Memory Disturb Characteristics of a Hourglass-Shaped Filament in Al2O3/Cu-Based CBRAM Devices,” IEEE Trans. Electron Devices, vol. 62, no. 6, pp. 2007–2013, Jun.2015. [14] M.Lanza, “A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope,” Materials (Basel)., vol. 7, no. 3, pp. 2155–2182, Mar.2014. [15] A.Sawa, “Resistive switching in transition metal oxides,” Mater. Today, vol. 11, no. 6, pp. 28–36, Jun.2008. [16] K.Szot, R.Dittmann, W.Speier, andR.Waser, “Nanoscale resistive switching in SrTiO3 thin films,” Phys. status solidi – Rapid Res. Lett., vol. 1, no. 2, pp. R86–R88, Mar.2007. [17] S.Choi, S.Ham, andG.Wang, “Memristor Synapses for Neuromorphic Computing,” in Memristors - Circuits and Applications of Memristor Devices [Working Title], IntechOpen, 2019. [18] T.Tsuruoka, K.Terabe, T.Hasegawa, andM.Aono, “Forming and switching mechanisms of a cation-migration-based oxide resistive memory,” Nanotechnology, vol. 21, no. 42, p. 425205, Oct.2010. [19] U.Russo, D.Ielmini, C.Cagli, andA. L.Lacaita, “Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices,” IEEE Trans. Electron Devices, vol. 56, no. 2, pp. 193–200, Feb.2009. [20] S.Yu, Ed., Neuro-inspired Computing Using Resistive Synaptic Devices. Cham: Springer International Publishing, 2017. [21] P. Y.Chen et al., “Mitigating effects of non-ideal synaptic device characteristics for on-chip learning,” 2015 IEEE/ACM Int. Conf. Comput. Des. ICCAD 2015, pp. 194–199, 2016. [22] I.-T.Wang, C.-C.Chang, L.-W.Chiu, T.Chou, andT.-H.Hou, “3D Ta/TaO x /TiO 2 /Ti synaptic array and linearity tuning of weight update for hardware neural network applications,” Nanotechnology, vol. 27, no. 36, p. 365204, Sep.2016. [23] J.Woo et al., “Improved Synaptic Behavior Under Identical Pulses Using AlO x /HfO 2 Bilayer RRAM Array for Neuromorphic Systems,” IEEE Electron Device Lett., vol. 37, no. 8, pp. 994–997, Aug.2016. [24] W.Wu et al., “A methodology to improve linearity of analog RRAM for neuromorphic computing,” in Digest of Technical Papers - Symposium on VLSI Technology, 2018. [25] L.Gao et al., “Fully parallel write/read in resistive synaptic array for accelerating on-chip learning,” Nanotechnology, vol. 26, no. 45, p. 455204, Nov.2015. [26] S.Park et al., “Neuromorphic speech systems using advanced ReRAM-based synapse,” in Technical Digest - International Electron Devices Meeting, IEDM, 2013. [27] S. H.Jo, T.Chang, I.Ebong, B. B.Bhadviya, P.Mazumder, andW.Lu, “Nanoscale memristor device as synapse in neuromorphic systems,” Nano Lett., vol. 10, no. 4, pp. 1297–1301, 2010. [28] J. A.Dean, Standard Thermodynamic Values State, vol. 6. New York, 1979. [29] M.Wittmer, J.Noser, andH.Melchior, “Oxidation kinetics of TiN thin films,” J. Appl. Phys., vol. 52, no. 11, pp. 6659–6664, Nov.1981. [30] D. R.Clarke, “Materials Selection Guidelines for Low Thermal Conductivity Thermal Barrier Coatings Temperature Dependence of Thermal Conductivity Models for Thermal Conductivity,” Surf. Coatings Technol., vol. 163–164, pp. 67–74, 2003. [31] B. K.Kotlyarchuk, D. I.Popovych, V. K.Savchuk, andA. S.Serednycki, “Pulsed Laser Deposition of ZrO 2 Thin Films for Application in Microelectronic Devices,” vol. 4, no. 42, pp. 434–439, 2003.
|