|
[1]Ashish Kumar, Vinay Kumar, Dhori Kedar Janardan,“A 6T-SRAM in 28nm FDSOI Technology with Vmin of 0.52V Using Assisted Read and Write Operation,” in Proc. IEEE Int. Conf. IC Design Technol., 2015. [2]T. Song et. al, “A 14 nm FinFET 128 Mb SRAM With Vmin Enhancement Techniques for Low-Power Applications,” IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 158-169, Jan. 2015. [3]S. Ohbayashi, M. Yabuuchi, K. Nii, Y. Tsukamoto, S. Imaoka, Y. Oda, T. Yoshihara, M. Igarashi, M. Takeuchi, H. Kawashima, Y. Yamaguchi, K. Tsukamoto, M. Inuishi, H. Makino, K. Ishibashi, and H. Shinohara, “A 65-nm SoC embedded 6T-SRAM designed for manufacturability with read and write operation stabilizing circuits,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 820–829, Apr. 2007. [4]O. Hirabayashi, A. Kawasumi, A. Suzuki, Y. Takeyama, K. Kushida, T. Sasaki, A. Katayama, G. Fukano, Y. Fujimura, T. Nakazato, Y. Shizuki, N. Kushiyama, and T. Yabe, “A process-variation-tolerant dual-power-supply SRAM with 0.179μm2 cell in 40 nm CMOS using level-programmable wordline driver,” in IEEE Int. Solid-State Circuits Conf. (ISSCC 2009) Dig. Tech. Papers, 2009, pp. 458–459, 459a. [5]K. Takeda et al., “Multi-step word-line control technology in hierarchical cell architecture for scaled-down high-density SRAMs,” IEEE J.Solid-State Circuits, vol. 46, no. 4, pp. 806-814, Apr. 2011 . [6]J. Chang, Y.H. Chen, H. Cheng, W.M. Chan, H. J. Liao, Q. Li, S. Chang, S. Natarajan, R. Lee, P. W. Wang, S. S. Lin, C. C. Wu, K. L. Cheng, M. Cao, and G. Chang, “A 20nm 112Mb SRAM in High-κ Metal-Gate with Assist Circuitry for Low-Leakage and Low-VMIN Applications,” in Proc. IEEE ISSCC Dig. Tech. Papers, pp. 316-317, 2013. [7]M. E. Sinangil, H. Mair, and A. P. Chandrakasan, “A 28nm high-density 6T SRAM with optimized peripheral-assist circuits for operation down to 0.6V,” in Proc. IEEE ISSCC Dig. Tech. Papers, pp. 260–261, 2011. [8]Mudit Bhargawa et al., “Low VMIN 20nm Embedded SRAM with Multi-voltage Wordline Control based Read and Write Assist Techniques”, in VLSI Tech. Dig. Paper, Jun. ,2014, pp. 1-2. [9]K. Zhang, U. Bhattacharya, Z. Chen, F. Hamzaoglu, D. Murray, N. Vallepalli, Y. Wang, B. Zheng, and M. Bohr, “A 3-GHz 70-mb SRAM in 65-nm CMOS technology with integrated column-based dynamic power supply,” IEEE J. Solid-State Circuits, vol. 41, no. 1,pp. 146–151, Jan. 2006. [10]H. Pilo, C. Barwin, G. Braceras, C. Browning, S. Lamphier, and F. Towler, “An SRAM design 65-nm technology node featuring read and write-assist circuit to expand operating voltage,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 813–819, Apr. 2007. [11]E. Karl et al., “A 4.6GHz 162Mb SRAM Design in 22nm TriGate CMOS Technology with Integrated Read and Write Assist Circuitry, ”IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 150-158, Jan 2013. [12]E. Karl et al., “A 0.6 V, 1.5 GHz 84 Mb SRAM in 14 nm FinFET CMOS technology with capacitive charge-sharing write assist circuitry,” IEEE J. Solid-State Circuits, vol. 51, no. 1, pp. 222–229, Jan. 2016 [13]J. Lohstroh, E. Seevinck, and J. de Groot, “Worst-Case Static Noise Margin Criteria for Logic Circuits and Their Mathematical Equivalence,” IEEE J. Solid-State Circuits, vol. 18, no. 6, pp. 803–07, Dec. 1983.
|