跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 05:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭仕賢
研究生(外文):Shih-Sian Guo
論文名稱:五種正常組織併發症機率模型之乳癌患者放射性肺炎劑量反應特性比較
論文名稱(外文):Comparison of dose-response characteristics of five normal tissue complication probability models through outcomes of radiation pneumonitis in breast cancer patients
指導教授:李財福李財福引用關係
指導教授(外文):Tsair-Fwu Lee
口試委員:段裘慶張力允趙珮如李財福
口試委員(外文):Chiu-Ching TuanLi-Yun ChangPei-Ju ChaoTsair-Fwu Lee
口試日期:2015-06-18
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:79
中文關鍵詞:乳癌放射性肺炎併發症NTCP預測模型有效體積
外文關鍵詞:breast cancerradiation pneumonitisNTCPeffect volume
相關次數:
  • 被引用被引用:1
  • 點閱點閱:461
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:1
目的 : 為了分析乳癌患者接受放射治療後,其肺臟劑量與放射性肺炎併發症(radiation pneumonitis, RP) 之反應關係。
材料與方法 : 本研究建立且比較五種不同正常組織併發症機率 (normal tissue complication probability, NTCP) 模型,同時定義出本研究族群所適用之NTCP預測模型。研究對象為87位乳癌患者,去除5筆劑量離散極端值,總共82筆資料進行分析。患者使用強度調控放射治療技術 (intensity-modulated radiotherapy, IMRT) 或混合型放射治療技術 (hybrid intensity-modulated radiotherapy, Hybrid IMRT) 進行治療。患者於放射治療後三個月進行併發症評估,最終併發症定義根據加拿大國家癌症研究所通用毒性標準 (Common Toxicity Criteria - National Cancer Institute of Canada, CTC - NCIC),主要觀察胸腔電腦斷層掃描 (computed tomography, CT) 影像變化,患者於CT影像中有第一級以上肺炎併發症之影像變化。接著針對樣本資料建立五種NTCP預測模型,分別為LKB (Lyman Kutcher-Burman)、Logistic、Schultheiss、Poisson、Kallman-s模型,NTCP預測模型主要用以探討同側肺臟劑量對於放射性肺炎併發症之反應曲線。針對整體模型效能、區別力與校準能力進行評估檢定,經由模型評估結果比較五種模型預測效力,並定義出適合本研究族群之預測模型。另外,本研究以LKB模型為基礎,建立有效體積LKB - Veff預測模型,觀察體積效應對於劑量與併發症發生率之影響,提供臨床醫師決定處方劑量之參考。
結果 : 本研究所建立五種NTCP模型之參數分別為 (1) LKB模型 : TD50 = 21.42 Gy (95% CI, 20.13 - 22.83), m = 0.27 (95% CI, 0.18 - 0.56);(2) Logistic模型 : TD50 = 21.41 Gy (95% CI, 20.12 - 22.86), γ= 1.48 (95% CI, 0.71 - 2.35);(3) Schultheiss模型 : TD50 = 21.26 Gy (95% CI, 19.89 - 22.74), k = 5.65 (95% CI, 2.67 - 9.07);(4) Poisson模型 : TD50 = 21.21 Gy (95% CI, 19.83 - 22.68), γ= 1.46 (95% CI, 0.74 - 2.21) ;(5) Kallman-s模型 : TD50 = 21.66 Gy (95% CI, 20.25 - 23.15), γ= 1.46 (95% CI, 0.74 - 2.20), s = 1.01。Kallman-s模型之整體模型效能AIC (Akaike's information criterion, AIC) 評估優於其他四種模型,其餘區別力與校準能力等評估參數則五種模型能力相當。
結論 :乳癌患者接受放射治療時,降低肺部接受劑量能夠有效減少肺炎併發症之發生機率,本研究結果最佳模型Kallman-s,定義放射性肺炎50% 併發症機率之劑量值為21.66 Gy,對於肺部器官可運用有效體積概念減少併發症發生,增加乳癌患者放療後生活品質。
Purpose : To investigate the relationship between lung dose and radiation pneumonitis in breast cancer patients after radiotherapy.
Materials and methods : We built and compared five normal tissue complication probability (NTCP) models through outcomes of radiation pneumonitis in breast cancer patients, and defined the best predictive NTCP model for local population in this study.
87 patients with breast cancer were evaluated and 5 outlier samples were excluded. In total, 82 patient data were used in this study. The patients were treated by intensity-modulated radiotherapy or hybrid intensity-modulated radiotherapy techniques. The patients were evaluated by chest computed tomography (CT) at 3 months after completion of radiation therapy. Density changes on chest CT were evaluated by comparing with the CT image prior to radiation therapy for radiation therapy treatment planning. Clinically complication was defined according to the modified Common Toxicity Criteria of the National Cancer Institute (CTC-NCIC). We used the sample data to build five NTCP models. The five models were LKB (Lyman Kutcher-Burman), Logistic, Schultheiss, Poisson and Kallman-s model, respectively. The five NTCP models were compared by different model performance validation tools. We also built LKB - Veff model based on the LKB model. LKB - Veff model provided the correlation of effective volume and dose at the same complication probability for clinical phycisian.
Results : The fitted parameters of five NTCP models were (1) LKB model :
TD50 = 21.42 Gy (95% CI, 20.13 - 22.83), m = 0.27 (95% CI, 0.18 - 0.56);(2) Logistic model : TD50 = 21.41 Gy (95% CI, 20.12 - 22.86), γ= 1.48 (95% CI, 0.71 - 2.35);(3) Schultheiss model : TD50 = 21.26 Gy (95% CI, 19.89 - 22.74), k = 5.65 (95% CI, 2.67 - 9.07);(4) Poisson model : TD50 = 21.21 Gy (95% CI, 19.83 - 22.68), γ= 1.46 (95% CI, 0.74 - 2.21) ;(5) Kallman-s model : TD50 = 21.66 Gy (95% CI, 20.25 - 23.15), γ= 1.46 (95% CI, 0.74 - 2.20), s = 1.01. Overall performance Akaike's Information Criterion (AIC) of Kallman-s model was better than the other four models, but other performance validation were equal in five models.
Conclusions : Reducing lung radiation dose in breast cancer patients can effectively reduce the probability of radiation pneumonitis. The dose of 50% probability of complications of radiation pneumonitis was 21.66 Gy in Kallman-s model, which was the best model in our study. Reducing the effective volume of irradiated lung could improve the quality of life of breast cancer patients.
摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 ix
符號縮寫 x
符號說明xi
第一章 緒論 1
1.1 動機 1
1.2 目的 2
1.3 相關文獻探討 3
第二章 材料與方法 5
2.1 前言 5
2.2 病患資料 7
2.2.1 極端值分析 9
2.2.2 獨立樣本T檢定 9
2.2.3 放射治療技術 10
2.2.4 最終併發症評估指標 11
2.3 資料降階處理 12
2.3.1 三維劑量分布之電腦斷層掃描影像 13
2.3.2 二維劑量-體積直方圖轉換 14
2.3.3 等效均勻劑量 16
2.3.4 廣義等效均勻劑量 17
2.4 正常組織併發症機率預測模型介紹 18
2.4.1 經驗法則模型說明 18
2.4.1.1 Lyman Kutcher-Burman model 18
2.4.1.2 Logistic model 22
2.4.1.3 Schultheiss model 24
2.4.2 生物法則模型說明 25
2.4.2.1 Poisson model 25
2.4.2.2 Kallman-s model 25
2.5 模型效能評估方法 26
2.5.1 整體模型檢定 (Overall) 26
2.5.1.1 正規化白氏得分 (scale Brier score) 26
2.5.1.2 Akaike's信息準則評估 26
2.5.2 模型區別力檢定 (Discrimination) 27
2.5.2.1 受測者特徵之曲線下面積 27
2.5.2.2 模型準確率 28
2.5.3 模型校準檢定 (Calibration) 28
2.5.3.1 Hosmer-Lemeshow test 28
2.5.3.2 校準曲線 (Calibration curve) 28
第三章 結果 29
3.1 前言 29
3.2 正常組織併發症機率預測模型研究成果 30
3.2.1 經驗法則模型結果 30
3.2.1.1 Lyman Kutcher-Burman model 30
3.2.1.2 Logistic model 31
3.2.1.3 Schultheiss model 33
3.2.2 生物法則模型結果 34
3.2.2.1 Poisson model 34
3.2.2.2 Kallman-s model 35
3.3 有效體積模型 36
3.3.1 劑量體積效應 37
3.3.2 正常組織併發症機率與劑量體積變化之關係 39
3.4 模型效能評估結果 42
3.5.1 整體模型檢定 (Overall) 42
3.5.2 模型區別力檢定 (Discrimination) 42
3.5.3 模型校準檢定 (Calibration) 43
第四章 討論 45
4.1 整體NTCP模型探討 45
4.2 相關研究之乳癌放射性肺炎併發症因子探討 49
4.3 有效體積運用 51
4.4 劑量體積影響關係 52
4.5 Kallman-s 模型建立之發現與探討 53
第五章 結論 54
參考文獻 55
自傳 63

[1]M. Overgaard, P. S. Hansen, J. Overgaard, C. Rose, M. Andersson, F. Bach, et al., "Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy," New England Journal of Medicine, vol. 337, pp. 949-955, 1997.
[2]M. Overgaard, M.-B. Jensen, J. Overgaard, P. S. Hansen, C. Rose, M. Andersson, et al., "Postoperative radiotherapy in high-risk postmenopausal breast-cancer patients given adjuvant tamoxifen: Danish Breast Cancer Cooperative Group DBCG 82c randomised trial," The Lancet, vol. 353, pp. 1641-1648, 1999.
[3]J. Ragaz, S. M. Jackson, N. Le, I. H. Plenderleith, J. J. Spinelli, V. E. Basco, et al., "Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer," New England Journal of Medicine, vol. 337, pp. 956-962, 1997.
[4]D. M. Hawkins, "The problem of overfitting," Journal of Chemical Information and Computer Sciences, vol. 44, pp. 1-12, 2004.
[5]J. Reunanen, "Overfitting in making comparisons between variable selection methods," The Journal of Machine Learning Research, vol. 3, pp. 1371-1382, 2003.
[6]A. Y. Ng, "Preventing" overfitting" of cross-validation data," ICML, vol. 97, pp. 245-253, 1997.
[7]A. van der Schaaf, J. A. Langendijk, C. Fiorino, and T. Rancati, "Embracing Phenomenological Approaches to Normal Tissue Complication Probability Modeling: A Question of Method," International Journal of Radiation Oncology, Biology, Physics, vol. 91, pp. 468-471, 2015.
[8]J. T. Lyman, "Complication probability as assessed from dose-volume histograms," Radiation Research, vol. 104, pp. S13-S19, 1985.
[9]P. Källman, A. Ågren, and A. Brahme, "Tumour and normal tissue responses to fractionated non-uniform dose delivery," International Journal of Radiation Biology, vol. 62, pp. 249-262, 1992.
[10]Y. Seppenwoolde, J. V. Lebesque, K. De Jaeger, J. S. Belderbos, L. J. Boersma, C. Schilstra, et al., "Comparing different NTCP models that predict the incidence of radiation pneumonitis," International Journal of Radiation Oncology, Biology, Physics, vol. 55, pp. 724-735, 2003.
[11]L. A. Dawson, D. Normolle, J. M. Balter, C. J. McGinn, T. S. Lawrence, and R. K. Ten Haken, "Analysis of radiation-induced liver disease using the Lyman NTCP model," International Journal of Radiation Oncology, Biology, Physics, vol. 53, pp. 810-821, 2002.
[12]G. Leunens, J. Verstraete, A. Dutreix, and E. Van der Schueren, "Assessment of dose inhomogeneity at target level by in vivo dosimetry: Can the recommended 5% accuracy in the dose delivered to the target volume be fulfilled in daily practice?," Radiotherapy and Oncology, vol. 25, pp. 242-250, 1992.
[13]G. Luxton, P. J. Keall, and C. R. King, "A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD)," Physics in Medicine and Biology, vol. 53, pp. 23-36, 2008.
[14]K.-R. Trott, W. Doerr, A. Facoetti, J. Hopewell, J. Langendijk, P. van Luijk, et al., "Biological mechanisms of normal tissue damage: importance for the design of NTCP models," Radiotherapy and Oncology, vol. 105, pp. 79-85, 2012.
[15]W. Dörr, "Radiobiological models of normal tissue reactions," Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft...[et al], vol. 174, pp. 4-7, 1998.
[16]V. Barnett and T. Lewis, Outliers in statistical data vol. 3: Wiley New York, 1994.
[17]J. Laurikkala, M. Juhola, E. Kentala, N. Lavrac, S. Miksch, and B. Kavsek, "Informal identification of outliers in medical data," Fifth International Workshop on Intelligent Data Analysis in Medicine and Pharmacology, pp. 20-24, 2000.
[18]R. McGill, J. W. Tukey, and W. A. Larsen, "Variations of box plots," The American Statistician, vol. 32, pp. 12-16, 1978.
[19]P. Kampstra, "Beanplot: A boxplot alternative for visual comparison of distributions," Journal of Statistical Software, vol. 28, pp. 1-9, 2008.
[20]G. H. John, "Robust Decision Trees: Removing Outliers from Databases," KDD, pp. 174-179, 1995.
[21]P. Baldi and A. D. Long, "A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes," Bioinformatics, vol. 17, pp. 509-519, 2001.
[22]Q. Wu, R. Mohan, M. Morris, A. Lauve, and R. Schmidt-Ullrich, "Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I: dosimetric results," International Journal of Radiation Oncology, Biology, Physics, vol. 56, pp. 573-585, 2003.
[23]M. Descovich, B. Fowble, A. Bevan, N. Schechter, C. Park, and P. Xia, "Comparison between hybrid direct aperture optimized intensity-modulated radiotherapy and forward planning intensity-modulated radiotherapy for whole breast irradiation," International Journal of Radiation Oncology, Biology, Physics, vol. 76, pp. 91-99, 2010.
[24]C. S. Mayo, M. M. Urie, and T. J. Fitzgerald, "Hybrid IMRT plans—concurrently treating conventional and IMRT beams for improved breast irradiation and reduced planning time," International Journal of Radiation Oncology, Biology, Physics, vol. 61, pp. 922-932, 2005.
[25]P. Farace, S. Zucca, I. Solla, G. Fadda, S. Durzu, S. Porru, et al., "Planning hybrid intensity modulated radiation therapy for whole-breast irradiation," International Journal of Radiation Oncology, Biology, Physics, vol. 84, pp. e115-e122, 2012.
[26]R. Holland, S. H. Veling, M. Mravunac, and J. H. Hendriks, "Histologic multifocality of tis, T1–2 breast carcinomas implications for clinical trials of breast‐conserving surgery," Cancer, vol. 56, pp. 979-990, 1985.
[27]G. J. Kutcher, A. R. Smith, B. L. Fowble, J. B. Owen, A. Hanlon, M. Wallace, et al., "Treatment planning for primary breast cancer: a patterns of care study," International Journal of Radiation Oncology, Biology, Physics, vol. 36, pp. 731-737, 1996.
[28]L. P. Muren, G. Maurstad, R. Hafslund, G. Anker, and O. Dahl, "Cardiac and pulmonary doses and complication probabilities in standard and conformal tangential irradiation in conservative management of breast cancer," Radiotherapy and Oncology, vol. 62, pp. 173-183, 2002.
[29]P. Therasse, S. G. Arbuck, E. A. Eisenhauer, J. Wanders, R. S. Kaplan, L. Rubinstein, et al., "New guidelines to evaluate the response to treatment in solid tumors," Journal of the National Cancer Institute, vol. 92, pp. 205-216, 2000.
[30]W. Huda and R. M. Slone, Review of radiologic physics: Lippincott Williams & Wilkins, 2003.
[31]S. Yamada, T. Ueguchi, T. Ogata, H. Mizuno, R. Ogihara, M. Koizumi, et al., "Radiotherapy treatment planning with contrast-enhanced computed tomography: feasibility of dual-energy virtual unenhanced imaging for improved dose calculations," Radiation Oncology, vol. 9, pp. 1-10, 2014.
[32]U. Schneider, E. Pedroni, and A. Lomax, "The calibration of CT Hounsfield units for radiotherapy treatment planning," Physics in Medicine and Biology, vol. 41, p. 111, 1996.
[33]R. Drzymala, R. Mohan, L. Brewster, J. Chu, M. Goitein, W. Harms, et al., "Dose-volume histograms," International Journal of Radiation Oncology, Biology, Physics, vol. 21, pp. 71-78, 1991.
[34]L. H. T. Leung, M. W. K. Kan, A. C. K. Cheng, W. K. H. Wong, and C. C. Yau, "A new dose–volume-based Plan Quality Index for IMRT plan comparison," Radiotherapy and Oncology, vol. 85, pp. 407-417, 2007.
[35]L. H. Leung, D. T. Chua, and P. Wu, "A new tool for dose conformity evaluation of radiosurgery treatment plans," International Journal of Radiation Oncology, Biology, Physics, vol. 45, pp. 233-241, 1999.
[36]A. Niemierko, "Reporting and analyzing dose distributions: a concept of equivalent uniform dose," Medical Physics, vol. 24, pp. 103-110, 1997.
[37]S. L. Kwa, J. C. Theuws, A. Wagenaar, E. M. Damen, L. J. Boersma, P. Baas, et al., "Evaluation of two dose–volume histogram reduction models for the prediction of radiation pneumonitis," Radiotherapy and Oncology, vol. 48, pp. 61-69, 1998.
[38]R. Mohan, G. Mageras, B. Baldwin, L. Brewster, G. Kutcher, S. Leibel, et al., "Clinically relevant optimization of 3‐D conformal treatments," Medical Physics, vol. 19, pp. 933-944, 1992.
[39]T. Lee, H. Ting, P. Chao, H. Wang, C. Shieh, M. Horng, et al., "Dosimetric advantages of generalised equivalent uniform dose-based optimisation on dose–volume objectives in intensity-modulated radiotherapy planning for bilateral breast cancer," Heart, vol. 450, pp. 238-555, 2014.
[40]T. Dijkema, C. P. Raaijmakers, R. K. Ten Haken, J. M. Roesink, P. M. Braam, A. C. Houweling, et al., "Parotid gland function after radiotherapy: the combined Michigan and Utrecht experience," International Journal of Radiation Oncology, Biology, Physics, vol. 78, pp. 449-453, 2010.
[41]J. T. Lyman and A. B. Wolbarst, "Optimization of radiation therapy, III: A method of assessing complication probabilities from dose-volume histograms," International Journal of Radiation Oncology, Biology, Physics, vol. 13, pp. 103-109, 1987.
[42]G. Kutcher, C. Burman, L. Brewster, M. Goitein, and R. Mohan, "Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations," International Journal of Radiation Oncology, Biology, Physics, vol. 21, pp. 137-146, 1991.
[43]T. E. Schultheiss, C. G. Orton, and R. Peck, "Models in radiotherapy: volume effects," Medical physics, vol. 10, pp. 410-415, 1983.
[44]V. Moiseenko, W. Y. Song, L. K. Mell, and N. Bhandare, "A comparison of dose-response characteristics of four NTCP models using outcomes of radiation-induced optic neuropathy and retinopathy," Radiation Oncology, vol. 6, p. 61, 2011.
[45]G. Meyfroidt, F. Güiza, D. Cottem, W. De Becker, K. Van Loon, J.-M. Aerts, et al., "Computerized prediction of intensive care unit discharge after cardiac surgery: development and validation of a Gaussian processes model," BMC Medical Informatics and Decision Making, vol. 11, p. 64, 2011.
[46]E. W. Steyerberg, Clinical prediction models: a practical approach to development, validation, and updating: Springer Science & Business Media, 2008.
[47]E. W. Steyerberg, A. J. Vickers, N. R. Cook, T. Gerds, M. Gonen, N. Obuchowski, et al., "Assessing the performance of prediction models: a framework for some traditional and novel measures," Epidemiology (Cambridge, Mass.), vol. 21, p. 128, 2010.
[48]E. Steyerberg, "Evaluation of performance," in Clinical Prediction Models, ed: Springer, 2009, pp. 255-280.
[49]P. C. Austin and E. W. Steyerberg, "Predictive accuracy of risk factors and markers: a simulation study of the effect of novel markers on different performance measures for logistic regression models," Statistics in Medicine, vol. 32, pp. 661-672, 2013.
[50]W. Pan, "Akaike's information criterion in generalized estimating equations," Biometrics, vol. 57, pp. 120-125, 2001.
[51]S. J. Hasstedt, "A mixed-model likelihood approximation on large pedigrees," Computers and Biomedical Research, vol. 15, pp. 295-307, 1982.
[52]H. Akaike, "A new look at the statistical model identification," Automatic Control, IEEE Transactions on, vol. 19, pp. 716-723, 1974.
[53]H. Bozdogan, "Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions," Psychometrika, vol. 52, pp. 345-370, 1987.
[54]J. A. Hanley and B. J. McNeil, "The meaning and use of the area under a receiver operating characteristic (ROC) curve," Radiology, vol. 143, pp. 29-36, 1982.
[55]J. M. Lobo, A. Jiménez‐Valverde, and R. Real, "AUC: a misleading measure of the performance of predictive distribution models," Global Ecology and Biogeography, vol. 17, pp. 145-151, 2008.
[56]R. G. Congalton, "A review of assessing the accuracy of classifications of remotely sensed data," Remote Sensing of Environment, vol. 37, pp. 35-46, 1991.
[57]B. Miladinovic, R. Mhaskar, A. Kumar, S. Kim, R. Schonwetter, and B. Djulbegovic, "External validation of a web-based prognostic tool for predicting survival for patients in hospice care," J Palliat Care, vol. 29, pp. 140-146, 2013.
[58]G. Tripepi, K. J. Jager, F. W. Dekker, and C. Zoccali, "Statistical methods for the assessment of prognostic biomarkers (part II): calibration and re-classification," Nephrology Dialysis Transplantation, vol. 25, pp. 1402-1405, 2010.
[59]E. W. Steyerberg, F. E. Harrell, G. J. Borsboom, M. Eijkemans, Y. Vergouwe, and J. D. F. Habbema, "Internal validation of predictive models: efficiency of some procedures for logistic regression analysis," Journal of Clinical Epidemiology, vol. 54, pp. 774-781, 2001.
[60]D. R. Cox, "Two further applications of a model for binary regression," Biometrika, pp. 562-565, 1958.
[61]H. Svensson, P. Westling, and L. Larsson, "Radiation-induced lesions of the brachial plexus correlated to the dose-time-fraction schedule," Acta Oncologica, vol. 14, pp. 228-238, 1975.
[62]A. Brahme, "Dosimetric precision requirements in radiation therapy," Acta Oncologica, vol. 23, pp. 379-391, 1984.
[63]A. Brahme and A. Argren, "Optimal dose distribution for eradication of heterogeneous tumors," Acta Oncologica, vol. 26, pp. 377-385, 1987.
[64]L. Lindborg and A. Brahme, "Influence of microdosimetric quantities on observed dose-response relationships in radiation therapy," Radiation Research, vol. 124, pp. S23-S28, 1990.
[65]P. Svolos, I. Tsougos, G. Kyrgias, C. Kappas, and K. Theodorou, "On the use of published radiobiological parameters and the evaluation of NTCP models regarding lung pneumonitis in clinical breast radiotherapy," Australasian Physical & Engineering Sciences in Medicine, vol. 34, pp. 69-81, 2011.
[66]G. Gagliardi, J. Bjöhle, I. Lax, A. Ottolenghi, F. Eriksson, A. Liedberg, et al., "Radiation pneumonitis after breast cancer irradiation: analysis of the complication probability using the relative seriality model," International Journal of Radiation Oncology, Biology, Physics, vol. 46, pp. 373-381, 2000.
[67]I. Tsougos, P. Mavroidis, J. Rajala, K. Theodorou, R. Järvenpää, M. A. Pitkänen, et al., "Evaluation of dose–response models and parameters predicting radiation induced pneumonitis using clinical data from breast cancer radiotherapy," Physics in Medicine and Biology, vol. 50, pp. 3535-3554, 2005.
[68]I. Tsougos, P. Mavroidis, K. Theodorou, J. Rajala, M. Pitkänen, K. Holli, et al., "Clinical validation of the LKB model and parameter sets for predicting radiation-induced pneumonitis from breast cancer radiotherapy," Physics in Medicine and Biology, vol. 51, pp. L1-9, 2006.
[69]I. Tsougos, P. Nilsson, K. Theodorou, E. Kjellén, S.-B. Ewers, O. Jarlman, et al., "NTCP modelling and pulmonary function tests evaluation for the prediction of radiation induced pneumonitis in non-small-cell lung cancer radiotherapy," Physics in Medicine and Biology, vol. 52, pp. 1055-1073, 2007.
[70]C. Burman, G. Kutcher, B. Emami, and M. Goitein, "Fitting of normal tissue tolerance data to an analytic function," International Journal of Radiation Oncology, Biology, Physics, vol. 21, pp. 123-135, 1991.
[71]T. Rancati, B. Wennberg, P. Lind, G. Svane, and G. Gagliardi, "Early clinical and radiological pulmonary complications following breast cancer radiation therapy: NTCP fit with four different models," Radiotherapy and Oncology, vol. 82, pp. 308-316, 2007.
[72]S. L. Kwa, J. V. Lebesque, J. C. Theuws, L. B. Marks, M. T. Munley, G. Bentel, et al., "Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients," International Journal of Radiation Oncology, Biology, Physics, vol. 42, pp. 1-9, 1998.
[73]P. Hardman, P. Tweeddale, G. Kerr, E. Anderson, and A. Rodger, "The effect of pulmonary function of local and loco-regional irradiation for breast cancer," Radiotherapy and Oncology, vol. 30, pp. 33-42, 1994.
[74]B. Jensen, N. Carlsen, and N. Nissen, "Influence of age and duration of follow-up on lung function after combined chemotherapy for Hodgkin's disease," European Respiratory Journal, vol. 3, pp. 1140-1145, 1990.
[75]M. Guckenberger, K. Heilman, J. Wulf, G. Mueller, G. Beckmann, and M. Flentje, "Pulmonary injury and tumor response after stereotactic body radiotherapy (SBRT): results of a serial follow-up CT study," Radiotherapy and Oncology, vol. 85, pp. 435-442, 2007.
[76]J. D. Bradley, A. N. Nofal, I. M. El Naqa, W. Lu, J. Liu, J. Hubenschmidt, et al., "Comparison of helical, maximum intensity projection (MIP), and averaged intensity (AI) 4D CT imaging for stereotactic body radiation therapy (SBRT) planning in lung cancer," Radiotherapy and Oncology, vol. 81, pp. 264-268, 2006.
[77]M. Hiraoka, Y. Matsuo, and Y. Nagata, "Stereotactic body radiation therapy (SBRT) for early-stage lung cancer," Cancer/Radiothérapie, vol. 11, pp. 32-35, 2007.
[78]J. Meyer, IMRT, IGRT, SBRT: advances in the treatment planning and delivery of radiotherapy: Karger Medical and Scientific Publishers, 2011.
[79]M. Trovo, A. Linda, I. El Naqa, C. Javidan-Nejad, and J. Bradley, "Early and late lung radiographic injury following stereotactic body radiation therapy (SBRT)," Lung Cancer, vol. 69, pp. 77-85, 2010.
[80]N. P. Nguyen, F. S. Almeida, A. Chi, L. M. Nguyen, D. Cohen, U. Karlsson, et al., "Molecular biology of breast cancer stem cells: potential clinical applications," Cancer Treatment Reviews, vol. 36, pp. 485-491, 2010.
[81]M. Bakhshandeh, B. Hashemi, S. R. M. Mahdavi, A. Nikoofar, M. Vasheghani, and A. Kazemnejad, "Normal tissue complication probability modeling of radiation-induced hypothyroidism after head-and-neck radiation therapy," International Journal of Radiation Oncology, Biology, Physics, vol. 85, pp. 514-521, 2013.
[82]J. Z. Wang, N. A. Mayr, and W. T. Yuh, "Behind EUD," Acta Oncologica, vol. 47, pp. 971-972, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 應用三種回歸分析變數選取方法探討鼻咽癌患者在螺旋放射治療後發生口乾併發症之預測因子
2. 應用馬氏田口系統與多變數分析挑選影響乳癌病患於混合型強度調控放射治療後發生放射性皮膚炎之預測因子
3. 影響乳癌放射線治療後引起放射性肺炎併發症 預測因子之研究
4. 發展YOLO影像辨識技術於精準醫療之自動化乳牛體溫監控平台以分析建立四種體溫異常預測模型
5. 放射治療輻射劑量之誘發二次癌症機率評估與平台建構
6. 統計學習方法在回溯性頭頸癌放射性治療後發生口乾症之多變數正常組織併發症預測效能分析
7. 含羧酸吲哚和3,4-亞乙基噻吩合成導電共聚物作為白金顆粒載體及其對甲醇氧化能力研究
8. 奈米銀粒-銀線/聚乙烯吡咯烷酮奈米複合纖維的製備及其光電特性之研究
9. 以溶膠凝膠-電漿改質法製備 高透明超親水可見光催化薄膜之研究
10. 發展田口-正常組織併發症機率基礎構築乳癌病患放射治療計畫臨床決策分析輔助系統
11. 考量物價指數連結擔保債權憑證之評價方法 - Copula 方法
12. 應用傾向分數配對探討強度調控放射治療和動態弧形強度調控放射治療誘發二次癌症之風險評估:針對鼻咽癌和乳癌病患接受治療為例
13. 複合功能型中空球合成與混膠研究
14. 氧化銫鎢粒子之表面改質及近紅外光遮蔽研究
15. 放射治療計畫之正常組織併發症機率與腫瘤控制率分析平台設計