跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/01 18:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曹宇亮
研究生(外文):Yuliang Cao
論文名稱:應用於電流源型雙主動橋式直流轉換器之變頻式二次側超前關斷調變方法
論文名稱(外文):A Variable-Frequency Secondary Leading-Off-Modulation Method for Current-Fed Dual Active Bridge DC/DC Converters
指導教授:陳耀銘
指導教授(外文):Yaow-Ming Chen
口試委員:金藝璘唐丞譽
口試委員(外文):Katherine A. KimCheng-Yu Tang
口試日期:2019-06-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:61
中文關鍵詞:雙向直流轉換器電流源型雙主動橋自然換向變頻式二次側超前關斷調變
DOI:10.6342/NTU201901144
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一種應用於電流源型雙主動橋式直流轉換器之變頻式二次側超前關斷調變方法,目的在於解決轉換器輕載條件下產生的環流電流與責任周期丟失現象。傳統的二次側調變鉗位方法能在不外加鉗位電路或RCD緩衝器的情況下,使轉換器在低壓側和高壓側分別達成自然換向和零電壓導通,因此得到很多關注。然而,此方法會在輕載下分別造成很大的環流電流和占空比丟失現象。
為了避免上述所提到的缺點,本文首先提出一種固定頻率下的二次側超前關斷調變方法。與傳統的二次側調變鉗位方法相比,通過在低壓側與高壓側的驅動信號間產生一個時間差,此方法可以將環流電流降低到一半並且完全消除占空比丟失現象。
基於定頻操作的二次側超前關斷調變方法,本文又進一步提出一種變頻式二次側超前關斷調變方法,可以將輕載下的環流電流減小。除了解決傳統二次側調變鉗位方法中的主要缺陷,此方法也將傳統方法的優點全部保留。本論文將會詳細介紹並說明變頻式二次側超前關斷調變方法的操作原理與數學公式推導,並且將會藉由電腦模擬以及一台330W原型機的實驗結果來驗證此方法的可行性與表現。
This paper proposes a variable-frequency secondary leading-off-modulation (VF-SLOM) method for the current-fed dual active bridge (CF-DAB) converters to solve the high circulating current and duty loss issues at light load. Owing to the achievement of natural commutation without active clamp or RCD snubber circuits, the conventional secondary-modulation-based clamping (SMBC) method has received a lot of attention. However, two main drawbacks—high circulating current and duty loss phenomenon—were not expected.
In order to solve the aforementioned drawbacks in SMBC, a Secondary Leading-Off-Modulation (SLOM) method is first proposed. With a time gap between gate signals of the low voltage (LV) side and high voltage (HV) side, the SLOM method decreases the circulating current to half and eliminates the duty loss phenomenon in SMBC method.
Based on the SLOM method, the VF-SLOM method with variable switching frequency can further decrease the circulating current further. Besides solving the drawbacks in SMBC method, the proposed VF-SLOM method retains the advantages of SMBC such as natural commutation at all LV switches and zero voltage switching (ZVS) turn-on at all HV switches. Details of the operation principle and the mathematical derivations are provided in this thesis. The simulations and experimental results of a 330W prototype circuit are also presented to validate the performance of the proposed VF-SLOM method.
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Paper Review and Motive 2
1.3 Outline 4
Chapter 2 CF-DAB DC/DC Converter 6
2.1 Circuit Topology 6
2.2 Operation Mode of SMBC 7
2.3 Drawbacks of SMBC method 12
2.3.1 Duty Loss 13
2.3.2 Peak Current and Circulating Current 14
Chapter 3 SLOM Method 15
3.1 Operation Principle 15
3.2 Mathematical Derivation 17
3.3 Comparison between SMBC and SLOM 19
3.3.1 Duty Loss 19
3.3.2 Peak Current and Circulating Current 20
3.3.3 RMS Current 22
Chapter 4 VF-SLOM Method 25
4.1 Derivation of Switching Frequency 25
4.2 Operation Principle of VF-SLOM 27
4.3 Improvements over SLOM 29
4.3.1 Peak and Circulating Current 29
4.3.2 RMS Current 30
Chapter 5 Computer Simulation 32
5.1 Specification of CF-DAB 32
5.2 Simulation Scenarios 33
5.3 Simulation Results 34
5.3.1 Full Load (k=1) 35
5.3.2 Half Load (k=0.5) 36
5.3.3 Light Load (k=0.2) 40
Chapter 6 Experimental Results 45
6.1 Circuit Diagram and Prototype 45
6.2 Boost Mode Operation 46
6.2.1 Full Load 47
6.2.2 Half Load 48
6.2.3 Transient Results 52
6.2.4 Efficiency 53
6.3 Buck Mode Operation 54
Chapter 7 Conclusion and Future Research 56
7.1 Summary and Major Contributions 56
7.2 Suggestions for Future Research 57
REFERENCES 58
[1]H. Akagi, Y. Kanazawa, and A. Nabae, "Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Components," IEEE Trans. Ind. Appl., vol. IA-20, no. 3, pp. 625-630, May 1984.
[2]T. Tsai, C. Yang, Y. Li, Y. Chen, and Y. Chang, "DC-Bus Dual-Level Control Strategy for PV Power System with Dual-Mode Operation," IEEE Transactions on Energy Conversion, vol. 34, no. 1, pp. 267-276, March 2019.
[3]L. Corradini, D. Seltzer, D. Bloomquist, R. Zane, D. Maksimovic, and B. Jacobson, "Minimum current operation of bidirectional dual-bridge series resonant DC/DC converters", IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3266-3276, Jul. 2012.
[4]X. Li and A. K. S. Bhat, "Analysis and design of high-frequency isolated dual-bridge series resonant DC/DC converter", IEEE Trans. Power Electron., vol. 25, no. 4, pp. 850-862, Apr. 2010.
[5]W. Chen, P. Rong, and Z. Lu, "Snubberless bidirectional dc–dc converter with new CLLC resonant tank featuring minimized switching loss", IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3075-3086, Sep. 2010.
[6]S. Thale, R. Wandhare, and V. Agarwal, "A Novel reconfigurable microgrid architecture with renewable energy sources and storage", IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1805-1816, Mar./Apr. 2015.
[7]R. L. Steigerwald, "A comparison of half-bridge resonant converter topologies", IEEE Trans. Power Electron., vol. 3, no. 2, pp. 174-182, Apr. 1988.
[8]W. Choi, K. M. Rho, and B. H. Cho, "Fundamental duty modulation of dual-active-bridge converter for wide-range operation", IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4048-4064, Jun. 2016.
[9]K. Wang, F. C. Lee, and J. Lai, "Operation principles of bi-directional full-bridge DC/DC converter with unified soft switching scheme and soft-starting capability", in Proc. IEEE APEC, 2000, pp. 111-118.
[10]K. Wang, C. Y. Lin, L. Zhu, D. Qu, F. C. Lee, and J. S. Lai, "Bi-directional DC/DC converters for fuel cell systems", IEEE Trans. Power Electron., pp. 47-51, 1998.
[11]Xuewei Pan and A. K. Rathore, "Comparison of bi-directional voltage-fed and current-fed dual active bridge isolated dc/dc converters low voltage high current applications", IEEE 23rd International Symposium on Industrial Electronics, 2014, pp. 2566-2571.
[12]W. Song and B. Lehman, "Current-fed dual-bridge DC-DC converter", IEEE Trans. Power Electron., vol. 22, pp. 461-469, March 2007.
[13]Shigenori Inoue and Hirofumi Akagi, "A Bi-Directional DC/DC Converter for an Energy Storage System," in Proc. IEEE APEC, 2007, pp. 761-767.
[14]Shigenori Inoue and Hirofumi Akagi, "Voltage Control of a Bi-Directional Isolated DC/DC Converter for Medium-Voltage Motor Drives", in Proc. IEEE Power Conversion Conference, 2007, pp. 1244-1250.
[15]Z. Ding, C. Yang, Z. Zhang, C. Wang, and S. Xie, "A novel soft-switching multiport bidirectional dc-dc converter for hybrid energy storage system", IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1595-1609, Apr. 2014.
[16]H. Zhou and A. M. Khambadkone, "Hybrid modulation for dual active bridge bi-directional converter with extended power range for ultracapacitor application", IEEE Trans. Ind. Appl., vol. 45, no. 4, pp. 1434-1442, Jul./Aug. 2009.
[17]A. K. Jain and R. Ayyanar, "PWM control of dual active bridge: comprehensive analysis and experimental verification", IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1215-1227, Apr. 2011.
[18]F. Krismer and J. W. Kolar, "Efficiency-optimized high-current dual active bridge converter for automotive applications", IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2745-2760, Jul. 2012.
[19]F. Krismer and J. W. Kolar, "Closed form solution for minimum conduction loss modulation of DAB converters", IEEE Trans. Power Electron., vol. 27, no. 1, pp. 174-188, Jan. 2012.
[20]I. O. Lee, S. Y. Cho, and G. W. Moon, "Phase-shifted dual H-bridge converter with a wide ZVS range and reduced output filter", in Proc. 38th IEEE IECON, 2012, pp. 656-661.
[21]S.-J. Jeon and G.-H. Cho, "A zero-voltage zero-current switching full bridge-DC converter with transformer isolation" IEEE Trans. Power Electron., vol. 16, no. 5, pp. 573-580, Sept. 2001.
[22]H. S. Choi, J. W. Kim, J. H. Lee, and B. H. Cho, "Modeling, analysis and design of 10 kW parallel module zero-voltage zero-current switched full bridge PWM converter," IEEE APEC 2000, vol. 1, pp. 321-326, Feb. 2000.
[23]S. Yujin and P.N. Enjeti, "A new soft switching technique for bidirectional power flow full-bridge dc-dc converter", Proceedings of Industry Applications Conference, 2002, vol. 4, pp. 2314-2319.
[24]T.-F. Wu, Y.-C. Chen, J.-G. Yang, and C.-L. Kuo, "Isolated bidirectional full-bridge DC–DC converter with a flyback snubber", IEEE Trans. Power Electron., vol. 25, no. 7, pp. 1915-1922, Jul. 2010.
[25]Y. Miura, M. Kaga, Y. Horita, and T. Ise, "Bidirectional isolated dual full-bridge dc–dc converter with active clamp for EDLC", in Proc. IEEE ECCE, 2010, pp. 1136-1143.
[26]G. Chen, Y. Lee, S. Hui, D. Xu, and Y. Wang, "Actively clamped bi-directional flyback converter", IEEE Trans Ind. Electron., vol. 47, no. 4, pp. 770-779, Aug. 2000.
[27]R. J. Wai, C. Y. Lin, and Y. R. Chang, "High step-up bidirectional isolated converter with two input power sources", IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2629-2643, Jul. 2009.
[28]T. Reimann, S. Szeponik, and G. Berger, J. Petzoldt, "A novel control principle of bi-directional dc-dc power conversion", in Proc. Rec. 28th Annu. IEEE Power Electron. Spec. Conf., 1997, vol. 2, pp. 978-984.
[29]Xuewei Pan and A. K. Rathore, "Novel bidirectional snubberless naturally commutated soft-switching current-fed full-bridge isolated dc/dc converter for fuel cell vehicles", IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2307-2315, May 2014.
[30]Y. Zhang, Z. Wang, and P. Liu, "Optimized modulation for current-fed dual active bridge to achieve high efficiency in wide load range", IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017, pp. 1381-1386.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top