|
REFERENCES
1.(a) D. R. Rosseinsky, R. J. Mortimer, Electrochromic systems and the prospects for devices. Adv. Mater. 2001, 13, 783-793; (b) P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge, UK, 2007. 2.(a) A. Patra, M. Bendikov, Polyselenophenes. J. Mater. Chem. 2010, 20, 422-433; (b) P. M. Beaujuge, C. M. Amb, J. R. Reynolds, Spectral engineering inπ-conjugated polymers with intramolecular donor-acceptor interactions. Acc. Chem. Res. 2010, 43, 1396-1407; (c) P. M. Beaujuge, J. R. Reynolds, Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268-320; (d) C. M. Amb, A. L. Dyer, J. R. Reynolds, Navigating the color platte of solution-processable electrochromic polymers. Chem. Mater. 2011, 23, 397-415; (e) A. Balan, D. Baran, L. Toppare, Benzotriazole containing conjugated polymers for multipurpose organic electrochromic applications. Polym. Chem. 2011, 2, 1029-1043; (f) G. Gunbas, L. Toppare, Electrochromic conjugated polyheterocycles and derivatives—hilights from the last decade towards realization of long lived aspirations. Chem. Commun. 2012, 48, 1083-1101. 3.(a) M. Thelakkat, Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng. 2002, 287, 442-461; (b) J. V. Grazulevicius, P. Strohriegl, J. Pelichowski, K. Pelichowski, Carbazole-containing polymers: synthesis, properties and applications. Prog. Polym. Sci. 2003, 28, 1297-1353; (c) Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 2007, 107, 953-1010. 4.(a) J.-F. Morin, M. Leclerc, D. Ades, A. Siove, Polycarbazoles: 25 years of progress. Macromol. Rapid Commun. 2005, 26, 761-778; (b) N. Bloudin, M. Leclerc, Poly(2,7-carbazole)s: structure-property relationships. Acc. Chem. Res. 2008, 41, 1110-1119; (c) P.-L. T. Boudreault, S. Beaupre, M. Leclerc, Polycarbazoles for plastic electronics. Polym. Chem. 2010, 1, 127-136. 5.(a) J. F. Ambrose, R. F. Nelson, Anodic oxidation pathways of carbazoles I. Carbazole and N-substituted derivatives. J. Electrochem. Soc. 1968, 115, 1159-1164; (b) J. F. Ambrose, L. L. Carpenter, R. F. Nelson, Electrochemical and spectroscopic properties of cation radicals III. Reaction pathways of carbazolium radical ions. J. Electrochem. Soc. 1975, 122, 876-894. 6.(a) Y.-C. Chen, G.-S. Huang, C.-C. Hsiao, S.-A. Chen, High triplet energy polymer as host for electrophosphorescence with high efficiency, J. Am. Chem. Soc. 2006, 128, 8549-8558; (b) M.-H. Tsai, H.-W. Lin, H.-C. Su, T.-H. Ke, C.-C. Wu,F.-C. Fang, Y.-L. Liao, K.-T. Wong, C.-I Wu, Highly efficient organic blue electrophosphorescent devices based on 3,6-bis(triphenylsilyl)carbazole as the host material. Adv. Mater. 2006, 18, 1216-1220; (c) M.-H. Tsai, Y.-H. Hong, C.-H. Chang, H.-C. Su, C.-C. Wu, A. Matoliukstyte, J. Simokaitiene, S. Grigalevicius, J. V. Grazulevicius, C.-P. Hsu, 3-(9-Carbazolyl)carbazoles and 3,6-di(9-carbazolyl)carbazoles as effective host materials for efficient blue organic electrophosphorescence. Adv. Mater. 2007, 19, 862-866; (d) J.-Q. Ding, B.-H. Zhang, J.-H. Lu, Z.-Y. Xie, L.-X. Wang, X.-B. Jing, F.-S. Wang, Solution-processable carbazole-based conjugated dendritic hosts for power-efficient blue-electrophosphorescent devices. Adv. Mater. 2009, 21, 4983-4986; (e) F.-M. Hsu, C.-H. Chien, P.-I Shih, C.-F. Shu, Phosphine-oxide-containing bipolar host material for blue electrophosphorescent devices. Chem. Mater. 2009, 21, 1017-1022; (f) Y.-T. Tao, Q. Wang, C.-L. Yang, C. Zhong, K. Zhang, J.-G. Qin, D.-G. Ma, Tuning the optoelectronic properties of carbazole/oxadiazole hybrids through linkage modes: hosts for highly efficient green electrophosphorescence. Adv. Funct. Mater. 2010, 20, 304-311; (g) W. Jiang, L. Duan, J. Qiao, G.F. Dong, D.-Q. Zhang, L.-D. Wang, Y. Qiu, High-triplet-energy tri-carbazole derivatives as host materials for efficient solution-processed blue phosphorescent devices. J. Mater. Chem. 2011, 21, 4918-4926; (h) L.-X. Xiao, Z.-J. Chen, B. Qu, J.-X. Luo, S. Kong, Q.-H. Gong, J. Kido, Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv. Mater. 2011, 23, 926-952; (i) Y.-T. Tao, C.-L. Yang, J.-G. Qin, Organic host materials for phosphorescent organic light-emitting diodes. Chem. Soc. Rev. 2011, 40, 2943-2970. 7.(a) H.-M. Wang, S.-H. Hsiao, Multicolor electrochromic poly(amide-imide)s with N,N-diphenyl-N’,N’-di-tert-butylphenyl-1,4-phenylenediamine moieties. Polym. Chem. 2010, 1, 1013-1023; (b) Y.-C. Kung, S.-H. Hsiao, Solution-processable, high-Tg, ambipolar polyimide electrochromics bearing pyrenylamine units. J. Mater. Chem. 2011, 21, 1746-1754 ; (c) H.-J. Yen, G.-S. Liou, Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem. 2012, 3, 255-264. 8.G.-S. Liou, H.-Y. Lin, Synthesis and electrochemical properties of novel aromatic poly(amine-amide)s with anodically highly stable yellow and blue electrochromic behaviors. Macromolecules 2009, 42, 125-134. 9.(a) C. Hohle, U. Hofmann, S. Schloter, M. Thelakkat, P. Strohriegl, D. Haarer, S. J. Zilkerb, Photorefractive triphenylamine-based glass: a multifunctional low molecular weight compound with fast holographic response. J. Mater. Chem. 1999, 9, 2205-2210; (b) M. He, R. J. Twieg, U. Gubler, D. Wright, W. E. Moerner, Synthesis and photorefractive properties of functional glasses. Chem. Mater. 2003, 15, 1156-1164. 10.G. Sonmez, I. Schwendeman, P. Schottland, K. Zong, J. R. Reynolds, N-Substituted poly(3,4-propylenedioxypyrrole)s: high gap and low redox potential switching electroactive and electrochromic polymers. Macromolecules 2003, 36, 639-647. 11.C. Lambert, G. Noll, The class II/III transition in triarylamine redox systems. J. Am. Chem. Soc. 1999, 121, 8434-8442.
|