跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 02:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉安
研究生(外文):An Liu
論文名稱:電荷幫浦升壓轉換器與飛馳電容式降升壓轉換器之設計
論文名稱(外文):Design of Charge-Pump Boost Converter and Flying-Capacitor Buck-Boost Converter
指導教授:黃育賢
口試委員:史富元馬斌嚴郭建宏賴柏洲李宗演
口試日期:2014-07-28
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:103
中文關鍵詞:升壓轉換器降升壓轉換器電源管理晶片電荷幫浦
外文關鍵詞:boost converterbuck-boost converterPower Management ICscharge pump
相關次數:
  • 被引用被引用:1
  • 點閱點閱:593
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
論文第一部份提出一種新型的連續導通模式的低漣波(ripple)高效率電荷幫浦(charge pump)升壓轉換器。所提出的轉換器的主要組成部分包括一個兩倍升壓的電荷幫浦和一個低通LC濾波器。此提出的轉換器具有正電壓且低漣波的輸出電壓,其電壓升壓比為(1 + D),其中D是切換控制訊號波形的責任週期。由於此轉換器的儲能電感與負載在所有時間皆保持連接,並且儲能電感亦一直保持連接到的電荷幫浦輸出電源(Vin與2Vin之間變動),故所提出之轉換器總是工作在連續導通模式中,因此輸出電壓漣波較小且輸出電容上的電流應力(current stress)亦較小。此電路採用TSMC 0.35μm 2P4M CMOS製程來實現,晶片面積為1.49mm×1.49mm(含PADs) ,其工作頻率為1MHz,此電路轉換效率可達到90.95 %,且其暫態響應時間約只有7μs。
本論文的第二個部份提出的電路為利用虛擬電流動態加速的脈波寬度調變(PWM)飛馳電容式降壓-升壓轉換器。此轉換器的電壓轉換比為2D,其中D是切換控制訊號波形的責任週期。此轉換器改善傳統切換式電容(switch capacitor)型轉換器效率較差的本質,以及傳統電感降升壓(buck-boost)轉換器穩定性較差的本質,所提出的轉換器的動作行為類似於傳統的同步整流降壓轉換器,因而具有非常高的系統的穩定性。且不同於傳統負輸出電壓的電感型降壓-升壓轉換器,提出的轉換器具有正的輸出電壓。此外,此改良架構的轉換器的控制電路,使用虛擬電流動態加速技術,可於負載於重負載和輕負載之間變化時,實現快速的暫態響應。本電路使用TSMC 0.35μm 2P4M CMOS來實現,晶片面積為1.5 mm× 1.5 mm (含PADs)。實驗結果顯示,提出的轉換器輸入電壓為3.3V,輸出電壓的範圍為1.0V-4.5V,其切換頻率為1 MHz,轉換效率最高可達到89.66%。應用虛擬電流動態加速技術的控制器,可達到當負載電流變化200 mA時,暫態響應小於2 μs的優異表現。

In this first part of this thesis, a new continuous conduction mode (CCM) low-ripple high-efficiency charge-pump boost converter is presented. Its components include a double voltage charge pump and a low pass LC filter. The voltage boost ratio of the positive low-ripple output voltage of the proposed converter is (1+D) where D is the duty cycle of the control switching signal waveform. Since the energy storage inductor is connected to the power source and the load at all times, the proposed converter always operates in CCM, the transient responses are fast, and the current stress on the output capacitor is reduced and the output voltage ripple is small. In this paper, the operation principles of the CCM low-ripple high-efficiency charge-pump boost converter are described in detail. Its circuitry is designed and implemented with a TSMC 0.35µm CMOS processes whose operation frequency is 1MHz. The circuitry is simple and the power conversion efficiency is up to 90.95%, and the transient response is only 7µs.
In this second part of this thesis, a fast transient response flying-capacitor buck-boost converter is proposed to improve the efficiency of conventional switched-capacitor converters. The voltage boost ratio of the proposed converter is 2D, where D is the duty cycle of the switching signal waveform. The behavior of the proposed converter is similar to a conventional synchronous-rectified buck converter, thus the stability of the system is very high. It has positive output voltage, which is different from the negative output voltage of a conventional buck–boost converter. Furthermore, the proposed structure utilizes pseudo-current dynamic acceleration techniques to achieve fast transient response when load changes between heavy load and light load. The switching frequency of the proposed converter is 1 MHz for 3.3V input and 1.0V-4.5V output range application. Experiment results show that the proposed scheme improves the transient response to within 2μs and the total power conversion efficiency can be as high as 89.66%. The proposed converter has been realized by a 2P4M CMOS chip by 0.35μm fabrication process with total chip size of about 1.5 mm × 1.5 mm, PADs included.

摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 相關研究發展現況 1
1.1.1 切換式轉換器研究發展現況 2
1.1.2 電荷幫浦研究發展現況 4
1.2 動機與目的 5
1.3 論文架構 7
第二章 電壓調整器介紹 9
2.1 切換式轉換器的種類 9
2.1.1 降壓轉換器 9
2.1.2 升壓轉換器 16
2.1.3 降升壓轉換器 21
2.2 基本切換式電容轉換器介紹 26
2.2.1 基本操作與原理 26
2.2.2 切換式電容轉換器效率探討 27
2.3 切換式直流-直流降壓轉換器各項效能與定義 28
2.3.1 輸出電壓漣波 28
2.3.2 轉換效率 29
2.3.3 暫態響應 30
2.3.4 負載調節率 31
2.3.5 線性調節率 31
2.3.6 升壓轉換器右半平面零點問題 32
第三章 連續導通模式低漣波高效率電荷幫浦升壓轉換器 33
3.1 簡介 33
3.2 整體電路架構 34
3.2.1 基本動作原理 36
3.2.2 輸出漣波分析 39
3.2.3 電荷幫浦轉換器的效率基本討論 40
3.2.4 電感銅損分析 41
3.2.5 提出的轉換器的效率 43
3.3 電感電容大小的設計考量 45
3.3.1 電感的設計 45
3.3.2 電荷幫浦電容的設計 48
3.3.3 輸出電容 的設計 50
3.4 小信號模型 52
3.5 電路實現 55
3.5.1 補償電路 56
3.5.2 斜波產生器 58
3.5.3 非重疊及驅動電路 59
3.6 量測結果 62
3.7 規格表與文獻比較表 67
第四章 飛馳電容式降升壓轉換器 69
4.1 摘要 69
4.2 電路說明 70
4.2.1 飛馳電容降升壓型轉換器的工作原理 71
4.2.2 轉換器的小訊號模型 75
4.2.3 虛擬電流動態加速控制電路 78
4.3 電路實現 82
4.3.1 虛擬電流動態斜波電路 82
4.3.2 PID補償網絡 85
4.3.3 脈衝寬度調變器 85
4.3.4 非重疊電路及驅動電路 86
4.4 量測結果 87
4.5 規格表與文獻比較表 93
第五章 結論與未來展望 95
5.1 結論 95
5.2 未來展望 95
參考文獻 97



[1] Y.H. Lee, M.Y. Fan, W.C. Chen, K.H. Chen, S.F. Liu, P.H. Chiu, S. Chen, C.Y. Shen, M.T. Hsieh, and H.A. Li, “A near-zero cross-regulation single-inductor bipolar-output (SIBO) converter with an active energy correlation control for driving cholesteric-LCD,” in Proc. IEEE Custom Integrated Circuits Conf.(CICC), Sept. 2011, pp. 1-4.
[2] J.-J. Chen, B.-H. Hwang, Y.-C. Jhang, Y.-S. Hwang, and C.-C. Yu, “A new fast-response buck converter using accelerated pulse-width-modulation techniques,” Int. J. Circ. Theor. Appl., 2011. doi: 10.1002/cta.823.
[3] M. D. Seeman and S. R. Sanders, “Analysis and optimization of switched-capacitor dc–dc converters,” in Proc. IEEE Workshop Comput. Power Electron., May 2006, pp. 213–223.
[4] H. S. Zhang, K. W. E. Cheng, and L. H. Siu, ” Formulation of buffer energy and experimental results of energy factor of DC–DC converters,” International Journal of Circuit Theory and Applications, vol. 41, no. 8, pp.779-791, Aug. 2013.
[5] K. N. Leung and P. K. T. Mok, “A capacitor-free CMOS low-dropout regulator with damping-factor-control frequency compensation,” IEEE Journal of Solid-State Circuits, vol. 38, no. 10, pp. 1691-1702, Oct. 2003.
[6] J. J. Chen, F. C. Yang, C. M. Kung, B. P. Lai, and Y. S. Hwang, “A capacitor-free fast-transient-response LDO with dual-loop controlled paths,” in Proc. IEEE Asian Solid-State Circuits Conference, 2007, pp. 364-367.
[7] J. J. Chen, M. S. Lin, H. C. Lin, and Y. S. Hwang, “Sub-1V capacitor-free low-power-consumption LDO with digital controlled loop,” in Proc. IEEE Asia Pacific Conference on Circuits and Systems, 2008, pp. 526-529.
[8] C. Y. Hsieh and K. H. Chen, “Boost DC-DC converter with fast reference tracking (FRT) and charge-recycling (CR) techniques for high-efficiency and low-cost LED driver,” IEEE Journal of Solid-State Circuits, vol. 44, no. 9, pp. 2568-2580, Sept. 2009.
[9] X. Peng, K. A. Corzine, and G. K. Venayagamoorthy, “Multiple reference frame-based control of three-phase PWM boost rectifiers under unbalanced and distorted input conditions,” IEEE Transactions on Power Electronics, vol. 23, no. 4, pp. 2006-2017, Jul. 2008.
[10] M. D. Mulligan, B. Broach, and T. H. Lee, “A 3MHz low-voltage buck converter with improved light load efficiency,” in Proc. IEEE International Solid-State Circuits Conference, 2007, pp. 528-620.
[11] F. Su and W. H. Ki, “Digitally assisted quasi-V2 hysteretic buck converter with fixed frequency and without using large-ESR capacitor,” in Proc. IEEE Int Solid-State Circuits Conf., Feb. 2009 , pp. 446-447,447a.
[12] C. Restrepo, S. Member, J. Calvente, A. Cid-pastor, A. E. Aroudi, R. Giral, and S. Member, “A noninverting buck-boost DC-DC switching converter with high efficiency and wide bandwidth,” IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2490-2503, Sept. 2011.
[13] R. Yu, H. Jiang, L. Zhang, C. Zhang, and Z. Wang, “A hybrid regulator with boost charge pump and low-dropout linear regulation,” in Proc. IEEE International Conference on Solid-State and Integrated Circuit Technology, 2010, pp. 587-589.
[14] J. J. Chen, P. N. Shen, and Y. S. Hwang,” A High-Efficiency Positive Buck-Boost Converter with Mode-Select-Circuit and Feed-Forward Techniques,” IEEE Trans. on Power Electronics, vol. 28, no. 9, pp. 4240-4247, Sept. 2013.
[15] P. C. Huang, W. Q. Wu, H. H. Ho, and K. H. Chen, “Hybrid buck–boost feedforward and reduced average inductor current techniques in fast line transient and high-efficiency buck–boost converter,” IEEE Trans. Power Electronics, vol. 25, no. 3, pp. 719-730, Mar. 2010.
[16] M. H. Huang and K. H. Chen, "Single-Inductor Multi-Output (SIMO) DC-DC Converters With High Light-Load Efficiency and Minimized Cross-Regulation for Portable Devices," IEEE Journal of Solid-State Circuits, vol. 44, pp. 1099-1111, 2009.
[17] J. J. Chen, B. H. Hwang, J. H. Hsu, Y. S. Hwang, and C. C. Yu, “Fast-response single-inductor dual-output hysteresis-current-controlled DC-DC buck converter,” Analog Integr. Cir. Signal Proc., vol. 70, no. 3, pp. 405-415, Jul. 2011.
[18] Z. Yao, L. Xiao, and Y. Yan, “Dual-buck full-bridge inverter with hysteresis current control,” IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 3153-3160, Aug. 2009.
[19] K. K. S. Leung and H. S. H. Chung, “Dynamic hysteresis band control of the buck converter with fast transient response,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, no. 7, pp. 398-402, Jul. 2005.
[20] C. H. Lin, H. W. Huang, and K. H. Chen, “Fast transient technique (FTT) in buck current-mode DC-DC converters for low-voltage SoC systems,” in Proc. Custom Integrated Circuits Conference, 2008, pp. 25-28.
[21] J. J. Chen, “An active current-sensing constant-frequency HCC buck converter using phase-frequency-locked techniques,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 55, no. 4, pp. 761-769, Apr. 2008.
[22] W. Liou, M. Yeh, and Y. L. Kuo, “A high efficiency dual-mode buck converter IC for portable applications,” IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 667-677, Mar. 2008.
[23] C. Fu, Z. Song, H. Chen, D. Cai, Q. Wang, and X. Hong, "A novel low ripple charge pump with a 2X/1.5X booster for PCM," Journal of Semiconductors, vol. 33, pp. 95001, 2012.
[24] S. W. Choi and K. D. Kwack, "A novel push‐pull type charge pump based on voltage doubler for LCD drivers," Journal of Information Display, vol. 9, pp. 9-13, 2008/01/01 2008.
[25] C. S.A. Gong, K. W. Yao, Y. H. Huang, and M. T. Shiue, “An efficiency enhanced CMOS voltage regulator module for bio-electronic implants,”, Circuits and Systems, Proc. IEEE APCCAS, pp. 121-124, 2008.
[26] M. H. Huang, P. C. Fan, and K. H. Chen, “Low-ripple and dual-phase charge pump circuit regulated by switched-capacitor-based bandgap reference,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1161–1172, May 2009.
[27] M. Zhu and F. L. Luo, ”Transient analysis of multi-state dc–dc converters using system energy characteristics,” International Journal of Circuit Theory and Applications, vol. 36, no.3, pp. 327-344, May 2008.
[28] K. I. Hwu and Y. T. Yau, “A KY boost converter,” IEEE Trans. Power Electron., vol. 25, no. 11, pp. 2699–2703, Nov. 2010.
[29] C. K. Tse, S. C. Wong, and M. H. L. Chow, “On lossless switched capacitor power converters,” IEEE Trans. Power Electronics, vol. 10, no.3, pp. 286–291, May 1995.
[30] S. C. Tan, Y. M. Lai, C. K. Tse, and C. K.Wu, “A pulse width modulation based integral sliding mode current controller for boost converters,” in IEEE Power Electron. Spec. Conf. Jun. 2006, pp. 1612–1618.
[31] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, MA: Kluwer, 2001.
[32] 楊豐誠,功率積體電路於直流-直流降壓轉換器與鋰離子電池充電器之設計及其應用,國立國立臺北科技大學,電腦與通訊研究所,博士論文,臺北,2008。
[33] 許瑞軒,具改善負載調節與快速暫態響應之直流-直流轉換器設計,國立國立臺北科技大學,電腦與通訊研究所,碩士論文,臺北,2010。
[34] C.-H. Hu and L.-K. Chang, “Analysis and modeling of on-chip charge pump designs basedon pumping gain increase circuits with a resistive load,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2187–2194, Jul. 2008.
[35] K. I. Hwu and Y. T. Yau, “KY converter and its derivatives,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 128–137, Jan. 2009.
[36] M. A. Al-Saffar, E. H. Ismail, A. J. Sabzali, and A. A. Fardoun, “An improved topology of SEPIC converter with reduced output voltage ripple,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2377–2386, Sept. 2008.
[37] J. J. Chen, F. C. Yang, Y. S. Hwang, J. H. Su, and Y. M. Chen, “Monolithic HCC buck and boost converters with simplified convergence analysis methods,” Analog Integrated Circuits and Signal Processing, vol. 55, no. 2, pp. 163-176, May 2008.
[38] G. Zhu and A. Ioinovici, “Steady-state characteristics of switched capacitor electronic converters,” J. Circuits Syst. Comput., vol. 7, no. 2, pp. 69–91, Jul. 1997.
[39] M. H. Huang, C. Y. Hsieh, P. C. Fan, and K. H. Chen, “A dual-phase charge pump circuit with compact size,” Analog Integrated Circuits and Signal Processing, vol. 64, no. 1, pp. 55-67, Jul. 2010.
[40] Y. S. Hwang, S. C. Wang, F. C. Yang, and J. J. Chen, ”New Compact CMOS Li-Ion Battery Charger Using Charge-Pump Technique for Portable Applications,” IEEE Trans. Circuits Syst. I, Reg. Papers,, vol. 54, no. 14, pp.705-712. Apr. 2007.
[41] Y. S. Lee and Y. Y. Chiu, “Zero current switching switched-capacitor bidirectional DC-DC converter,” in Proc. Inst. Elect. Eng., vol. 152, no.6, Nov. 2005, pp. 1525-1530.
[42] Y. G. Song, Y. S. Choi, and J. G. Ryu, ”A phase-locked loop of the resistance and capacitance scaling scheme with multiple charge pumps,” Analog Integrated Circuits and Signal Processing, vol. 66, no.2, pp.155-162, Feb. 2011.
[43] B. Axelrod, Y. Berkovich, and A. Ioinovici, "Switched capacitor/switched inductor structures for getting transformerless hybrid DC-DC PWM converters" IEEE Trans. on Circuits and Systems, vol. 55, no 2, pp. 687-696, Mar. 2008.
[44] M. Belloni, E. Bonizzoni, P. Malcovati, and F. Maloberti, “A high efficiency 4-output single inductor DC–DC buck converter with self boosted snubber,” Analog Integrated Circuits and Signal Processing, vol. 67, no 2, pp. 169-177, May 2011.
[45] Y. K. Lo, J. T. Chen, C. Y. Lin, and S. Y. Ou, ”Improved control-to-output characteristics of a PWM buck-boost converter,” International Journal of Circuit Theory and Applications, vol. 39, no 2, pp. 203-209, Feb. 2011.
[46] C. K. Cheung, S. C. Tan, C. K. Tse, and A. Ioinovici, “On Energy Efficiency of Switched-Capacitor Converters,” IEEE Trans. on Power Electronics, vol. 28, no. 2, pp. 862 - 876, Feb. 2013.
[47] J. Jia and K. N. Leung, "Digital-Control Single-Inductor Triple-Output DC-DC Converter With Pre-Sub-Period Inductor-Current Control," IEEE Trans. on Power Electronics, vol. 27, pp. 2028-2042, 2012.
[48] X. Jing, P. K. T. Mok, and M. C. Lee, "A Wide-Load-Range Constant-Charge-Auto-Hopping Control Single-Inductor-Dual-Output Boost Regulator With Minimized Cross-Regulation," IEEE Journal of Solid-State Circuits, vol. 46, pp. 2350-2362, 2011.
[49] K. I. Hwu and Y. T. Yau, “Two types of KY buck-boost converters ,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 2970-2980 , Aug. 2009.
[50] A. Ioinovici, C. K. Tse, and Henry S. H. Chung, “Comments on "Design and analysis of switched-capacitor-based step-up resonant converters" IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 53, no. 6, pp. 1403, Jun. 2006.
[51] K. D. T. Ngo and R. Webster, “Steady-state analysis and design of a switched-capacitor DC-DC converter,” IEEE Trans. Aerosp. Electron. Syst., vol. 30, no.1, pp.92-101, Jan. 1994.
[52] H. S. H. Chung, “Design and analysis of a switched-capacitor-based step-up DC/DC converter with continuous input current,” IEEE Transactions on Circuits and Systems I, vol. 46, no. 6, pp. 722-731, Jun. 1999.
[53] O. Keiser, P. K. Steimer, and J. W. Kolar, “High power resonant switched-capacitor step-down converter,” in Proc. IEEE Power Electron. Spec. Conf. (PESC), Jun. 2008, pp. 2772-2777.
[54] C. K. Cheung, S. C. Tan, Y. M. Lai, and C. K. Tse, “A new visit to an old problem in switched-capacitor converters,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3192 -3195, Jun. 2010.
[55] M. Siu, P. K. T. Mok, K. N. Leung, Y. H. Lam, and W. H. Ki, “A voltage-mode PWM buck regulator with end-point prediction,” IEEE Trans. Circuits and Syst. II, Exp. Briefs, vol. 53, no. 4, pp. 294-298, Apr. 2006.
[56] J. Sun, “Characterization and performance comparison of ripple-based control for voltage regulator modules,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 346-353, Mar. 2006.
[57] R. Redl and J. Sun, “Ripple-Based Control of Switching Regulators-An Overview,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2669-2680, Dec. 2009.
[58] W. C. Chen, Y. C. Kang, C. C. Lin, K. H. Chen, S. M. Wang, M. W. Lee, and H. Y. Luo, “Reduction of equivalent series inductor effect in delay-ripple reshaped constant on-time control for buck converter with multi-layer ceramic capacitors,” in Proc. IEEE Energy Conversion Congr. and Expo.(ECCE), Sept. 2012, pp. 755-758.
[59] Y. Y. Mai and P. K. T. Mok, “A Constant Frequency Output-Ripple-Voltage-Based Buck Converter Without Using Large ESR Capacitor,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 8, pp. 748-752, Aug. 2008.
[60] S. J. Wang, Y. H. Lee, Y. C. Lai, and K. H. Chen, “Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor,” in Proc. IEEE Custom Integrated Circuits Conf., Sept. 2009, pp. 211-214.
[61] Y. H. Lee, W. W. Lai, W. Y. Pai, K. H. Chen, M. J. Du, and S. H. Cheng, “Reduction of Equivalent Series Inductor Effect in Constant On-Time Control DC-DC Converter without ESR Compensation,” in Proc. IEEE Int. Symp. on Circuits & Systems(ISCAS), 2011, pp.753-756.
[62] H. W. Chang, W. H. Chang, and C. H. Tsai, “Integrated single-inductor buck-boost or boost-boost DC-DC converter with power-distributive control,” in Proc. IEEE PEDS, Nov. 2009, pp.1184-1187.
[63] S. L. Chen and M. D. Ker, “A new schmitt trigger circuit in a 0.13-μm 1/2.5-V CMOS process to receive 3.3-V input signals,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 52, no. 7, pp. 361-365, Jul. 2005.
[64] P. Y. Wu, S. Y. S. Tsui, and P. K. T. Mok, “Area- and Power-Efficient Monolithic Buck Converters With Pseudo-Type III Compensation,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1446-1455, Aug. 2010.
[65] Y. Zheng, H. Chen, and K. N. Leung, “A fast-response Pseudo-PWM buck converter with PLL-based hysteresis control,” IEEE Trans. Very Large Scale Integration (VLSI) Syst., vol. 20, no. 7, pp. 1167-1174, Jul. 2012.
[66] W. Qiu, S. Mercer, Z. Liang, and G. Miller, “Driver deadtime control and its impact on system stability of synchronous buck voltage regulator,” IEEE Trans. Power Electron., vol. 23, no.1, pp. 163-171, Jan. 2008.
[67] F. Luo and D. Ma, “Design of digital tri-mode adaptive-output buck–boost power converter for power-efficient integrated systems,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2151-2160, Jun. 2010.
[68] Y. H. Lee, S. C. Huang, S. W. Wang, W. C. Wu, P. C. Huang, H. H. Ho, Y. T. Lai, and K. H. Chen, “Power-Tracking Embedded Buck–Boost Converter With Fast Dynamic Voltage Scaling for the SoC System,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1271-1282, Mar. 2012.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊