|
A.R. Rathmell and B.J. Wiley, Synthesis and Coating of Long, Thin Copper Nanowires to Make Flexible Transparent Conducting Films on Plastic Substrates. Advanced Materials, 23(2011), 4798 A.R. Rathmell, M. Nuyen, M. Chi and B.J. Wiley, Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks. Nano Letter, 12(2012), 3193 K.C Chen, W.W. Wu, C.N Liao, L.J Chen and K.N. Tu, Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper. Science, 321(2008), 1066 L. Lu, Y. Shen, X. Chen, L. Qian and K. Lu, Ultrahigh Strength and High Electrical Conductivity in Copper . Science, 304(2004), 422 T.C Chan, Y.M Lin, H.W Tsai, Z.M. Wang, C.N. Liao and Y.L Chueh, Growth of large-scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: controllable nanotwin density and growth orientation with enhanced electrical endurance performance. Nanoscale, 6(2014), 7332 C.J Yang, C.L Huang and C.N. Liao, Enhancing Chemical Stability of Electroplated Cu Films by Engineering Electrolyte Chemistry and Twinning Structure. Journal of Electronic Materials, 44(2015), 2529 S. Ono, Structure and Growth Mechanism of Anodic Oxide Films Formed on Aluminum and Their Gas Emission. Journal of the Vacuum Society of Japan, 52 (2009), 637 O. Jessensky, F. Müller and U. Gösele, Self-Organized Formation of Hexagonal Pore Structures in Anodic Alumina. Applied Physics Letters, 72(1998), 1173 A.P. Li, F. Mu¨ller, A. Birner, K. Nielsch and U. Go¨sele, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. Journal of Applied Physics, 84(1998), 11 J.P. O’Sullivan and G.C. Wood, The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium. The Royal Society, 317(1970), 511 G. Paolini, M. Masoero, F. Sacchi and M. Paganelli, An Investigation of Porous Anodic Oxide Films on Aluminum by Comparative Adsorption, Gravimetric and Electronoptical Measurements. Journal of the Electrochemical Society, 112(1965), 32 M. Lai and D.J Riley, Templated electrosynthesis of nanomaterials and porous structures. Journal of Colloid and Interface Science, 323(2008), 203 H. Masuda and K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science, 268(1995) 1466 G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister and U. Gösele, Highly ordered monocrystalline silver nanowire arrays. Journal of Applied Physics, 91(2002), 3243 X. H. Chen, L. Lu and K. Lu, Electrical resistivity of ultrafine-grained copper with nanoscale growth twins. Journal of Applied Physics, 102(2007), 083708 H. Yoshinaga, Measurements of the anisotropy of the dislocation resistivity in Au, Ag, and Cu. Physica Status Solidi, 18(1966), 625 I. Nakamichi, Electrical Resistivity and Grain Boundaries in Metals. Material Science Forum, 207(1996), 47. L. H. Qian, Q. H. Lu, W. J. Kong and K. Lu, Electrical Resistivity of fully-relaxed Grain Boundaries in Nanocrystalline Copper. Scripta Materialia. 50(2004), 1407 A. F. Mayadas and M. Shatzkes, Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces. Physical Review B: Condensed Matter, 1(1970), 1382 D. Xu, W.L. Kwan, K. Chen, X. Zhang, V. Ozoliņš and K. N. Tu, Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition. Applied Physics Letter, 91(2007), 254105 J. M. Howe, Interfaces in Materials (Wiley, New York, 1997) C.N. Liao, Y.C. Lu and D. Xu, Modulation of Crystallographic Texture and Twinning Structure of Cu Nanowires by Electrodeposition. Journal of The Electrochemical Society, 160(2013), 207. S. Zhong, T. Koch, M. Wang, T. Scherer, S. Walheim,H. Hahn and T. Schimmel, Nanoscale Twinned Copper Nanowire Formation by Direct Electrodeposition. Small, 5(2009), 2265 M. E. T. Molares, E. M. Höhberger, Ch. Schaeflein, R. H. Blick, R. Neumann and C. Trautmann, Electrical characterization of electrochemically grown single copper nanowires. Applied Physics Letters, 82(2003), 2139 S. Kondo, N. Sakuma, Y. Homma and N. Ohashi, Slurry Chemical Corrosion and Galvanic Corrosion during Copper Chemical Mechanical Polishing. Japan Society of Applied Physics, 39(2000), 6216 W. Luo, P. Shi, Y. Xu, M. Yan and C. Wang, Electrochemical Corrosion Behavior of Bulk Nanocrystalline Copper in Nitric Acid Solution. Journal of The Electrochemical Society, 159(2012), C80 U. Erb, H. Gleiter and G. Schwitzgebel, The Effect of Boundary Structure (Energy) on Interfacial Corrosion. Acta Metallurgica, 30(1982), 1377 F. Maurer, J. Brotz, S. Karim, M. E. T. Molares, C. Trautmann and H. Fuess, Preferred growth orientation of metallic fcc nanowires under direct and alternating electrodeposition conditions. Nanotechnology, 18(2007), 135709 盧逸滄, 國立清華大學碩士論文 (2012) X. W. Wang, G. T. Fei, X. J. Xu, Z. Jin and L. D. Zhang, Size-Dependent Orientation Growth of Large-Area Ordered Ni Nanowire Arrays. Journal of Physical Chemistry B, 109(2005), 24326 R. L. Graham, G. B. Alers, T. Mountsier, N. Shamma, S. Dhuey, S. Cabrini, R. H. Geiss, D. T. Read and S. Peddeti , Resistivity dominated by surface scattering in sub-50 nm Cu wires. Applied Physics Letters 96(2010), 042116 G. S. Lotey, S. Kumar, N. K. Verma, Fabrication and electrical characterization of highly ordered copper nanowires. Applied Nanoscience, 2(2012), p7–13 A. Kobler, T. Beuth, T. Klo¨ ffel,R. Prang,M. Moosmann,T. Scherer, S Walheim, H. Hahn, C. Ku¨ bel,B. Meyer, T. Schimmela and E. Bitzeke, Nanotwinned silver nanowires: Structure and mechanical properties. Acta Metallurgica, 92 (2015), 299 I.G. Batyrev and L.Kleinman, In-plane relaxation of Cu (111) and Al (111)/"α" -〖"Al" 〗_"2" "O" _"3" (0001) interfaces. Physical Revies B, 64(2001), 033410 C.L. Huang and C. N. Liao, Chemical reactivity of twin-modified copper nanowire surfaces. Applied Physics Letters, 107(2015), 021601 S. B. Cronin, Y. M. Lin, O. Rabin, M. R. Black, J. Y. Ying, M. S. Dresselhaus, P. L. Gai, J. P. Minet and J. P. Issi, Making electrical contacts to nanowires with a thick oxide coating. Nanotechnology, 13(2002), 1
|