跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.60) 您好!臺灣時間:2025/12/01 08:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖長鴻
研究生(外文):Chang-Hung Liao
論文名稱:高功率雙向全橋直流/直流轉換器研製
論文名稱(外文):Design and Implementation of a Bi-directional Full-Bridge DC-DC Converter for High Power Application
指導教授:黃明熙
口試委員:方志行歐勝源
口試日期:2010-07-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電力電子產業研發碩士專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:82
中文關鍵詞:雙向全橋直流/直流轉換器變壓器並聯數位訊號處理器
外文關鍵詞:Bi-directional Full-bridge DC/DC ConverterParalleled TransformersDigital Signal Processor
相關次數:
  • 被引用被引用:6
  • 點閱點閱:494
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文是以設計具有高功率之隔離型雙向全橋直流/直流轉換器作為研究核心,其中降壓與升壓模式,分別為相移全橋和具有電流前饋之全橋電路來實現。為克服高頻變壓器之功率限制,因此以並聯多組變壓器來提高輸出功率並嘗試從電路之佈線來降低隔離變壓器之漏感與對多只變壓器並聯路徑進行配置以達到均流之目的。所提之控制策略是以串接之電壓與電流迴路來達到定電壓與定電流輸出控制之目的,為實現所提出之控制策略,建構輸入400V與輸出310V/10 kW之系統並以數位訊號處理器為控制核心,配合週邊電路來進行數位化功率控制,並用組合語言撰寫程式以縮短軟體執行時間,使切換頻率得以提高。最後經由實際的量測來驗證所提之控制策略與系統之有效性。

This thesis is aimed to design a bi-directional full-bridge DC-DC converter for high power application, its buck and boost mode are implemented through phase-shift full-bridge and current-fed full-bridge circuit structure. To overcome the power limitation of high-frequency transformer, therefore multiple transformers connected in parallel are carried out to increase output power. A careful components placement and layout of power circuit are proposed to guarantee well current sharing among paralleled transformers and less leakage inductance. The proposed controller consists of voltage and current regulator in cascade to achieve constant-voltage and constant-current control. In order to facilitate the studies performed in this thesis, a DSP-based converter with necessary peripherals is established to provide 400V input and 10kW/310V output. All the control algorithms are implemented by assembly language to shorten the execution time, and hence the carrier frequency can be increased to reduce the converter volume. After establishing the converter, some measured results are provided to show its successful operation and effectiveness.

摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號彙編 xi
第一章 緒論 1
  1.1 研究動機與目的 1
  1.2 研究方法 3
  1.3 論文大綱 7
第二章 雙向全橋直流/直流轉換器原理與分析 8
  2.1 前言 8
  2.2 雙向全橋直流/直流轉換器之基本架構 8
2.2.1 高功率變壓器之分析 10
    2.2.2 CFFB之功率晶體電壓突波分析 10
  2.3 雙向全橋直流/直流轉換器之動作原理 11
2.3.1 充電模式之動作原理 12
    2.3.2 充電模式之穩態分析 16
    2.3.3 充電模式之零電壓切換分析 16
    2.3.4 放電模式之動作原理 17
    2.3.5 CFFB系統關閉之動作原理 21
    2.3.6 放電模式之穩態分析 23
第三章 系統設計與模擬環境建構 24
  3.1 前言 24
  3.2 電路系統設計與規格 24
3.2.1 高頻變壓器設計 25
    3.2.2 低壓側之低通濾波器設計 32
    3.2.3 功率晶體開關與二極體之選擇 34
  3.3 系統模擬環境建構 34
3.3.1 PSFB之充電模式模擬結果 35
    3.3.2 CFFB之充電模式模擬結果 38
第四章 系統之軟體與硬體設計 43
  4.1 前言 43
  4.2 電路硬體設計 43
4.2.1 功率級佈線設計 45
    4.2.2 電流感測器 46
    4.2.3 準位調整電路 46
    4.2.4 精密全波整流電路 47
    4.2.5 拴鎖電路 48
    4.2.6 電壓回授及電壓保護電路 48
    4.2.7 電流回授及電流保護電路 49
    4.2.8 光隔離驅動電路 50
  4.3 TMS320F2809 DSP簡介 51
4.3.1 微處理器之選配原則 51
    4.3.2 TMS320F2809之特點 51
    4.3.3 增強型控制週邊-脈波寬度調變產生模組 53
    4.3.4 中斷處理之流程 55
    4.3.5 A/D轉換器 56
    4.3.6 串列週邊介面與D/A模組 57
  4.4 系統軟體規劃與設計 59
4.4.1 充電模式 59
    4.4.2 放電模式 60
    4.4.3 軟體流程圖 60
    4.4.4 數位補償器 62
第五章 實驗結果與討論 66
  5.1 前言 66
  5.2 充電模式之實驗結果 67
5.2.1充電模式之穩態特性 67
    5.2.2充電模式之負載變動與轉換特性 70
    5.2.3充電模式之系統效率 73
  5.3 放電模式之實驗結果 74
5.3.1放電模式之穩態特性 74
    5.3.2充電模式之系統效率 76
第六章 結論與未來展望 77
  5.1 結論 77
  5.2 未來展望 77
參考文獻 78
作者簡歷 82


[1]薛乃綺,「電動車普及的關鍵因素之一:充電站基礎設施的建置」,台灣區電機電子工業同業公會電子報,第109期,2010。
[2]D. C. Erb, O. C. Onar, and A. Khaligh, “Bi-directional charging topologies for plug-in hybrid electric vehicles,” in Proc. 2010 25th Annual IEEE APEC, 2010, pp. 2066-2072.
[3]C. C. Hua and C. H. Hsu, “Implementation of a regenerative pulse and equalization battery charger using a DSP,” in Proc. of 2005 International Conference on PEDS, 2005, pp. 955-959.
[4]Y. Lee, A. Khaligh, and A. Emadi, “Advanced integrated bi-directional AC/DC and DC/DC converter for plug-in hybrid electric vehicles,” IEEE Trans. on Vehicular Technology, vol. 58, no. 8, pp 3970-3980, 2009.
[5]F. Z. Peng, H. Li, G. J. Su, and J. S. Lawler, “A novel ZVS bidirectional DC-DC converter for fuel cell and battery application,” IEEE Trans. Power Electron., vol.19, no. 1, pp. 54-65, 2004.
[6]V. Bhajana and S. R. Reddy, “A novel ZVS-ZCS bidirectional DC-DC converter for fuel cell and battery application,” in Proc. of 2009 International Conference on PEDS, 2009, pp. 12-17.
[7]I. Shigenori and A. Hirofumi, “A bidirectional DC-DC converter for an energy storage system with galvanic isolation,” IEEE Trans. Power Electron., vol.22, no. 6, pp. 2299-2306, 2007.
[8]許宏遠,「燃料電池複合機車用之具有交錯控制直流-直流轉換器研製」,國立台北科技大學電機工程系碩士學位論文,民國九十七年。
[9]L. Zhu, “A novel soft-commutating isolated boost full-bridge ZVS-PWM DC–DC converter for bidirectional high power applications,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 422-429, 2006.
[10]C. L. Chu and Y. Chen, “ZVS-ZCS bidirectional full-bridge DC-DC converter,” in Proc. of International Conference on PESD, 2009, pp. 1125-1130.
[11]T. F. Wu, Y. C. Chen, J. G. Yang, Y. C. Huang, S. S. Shyu, and C. L. Lee, “1.5 kW isolated bi-directional DC-DC converter with a flyback snubber,” in Proc. of International Conference on PEDS, 2009, pp. 164-169.
[12]V. Yakushev, V. Meleshin, and S. Fraidlin, “Full-bridge isolated current fed converter with active clamp,” in Proc. of 14th Conference and Exposition on APEC, 1999, pp. 560-566.
[13]E. Adib and H. Farzanehfard, “Zero-voltage transition current-fed full-bridge PWM converter,”IEEE Trans. Power Electron., vol. 24, no. 4, pp. 1041-1047, 2009.
[14]R. Y. Chen, T. J. Liang, J. F. Chen, R. L. Lin, and K. C. Tseng, “Study and implementation of a current-fed full-bridge boost DC–DC converter with zero-current switching for high-voltage applications,”IEEE Trans. Ind. Applicat., vol. 44, no. 4, pp. 1218-1226, 2008.
[15]M. Nymand and M. A. E. Andersen, “High-efficiency isolated boost DC–DC converter for high-power low-voltage fuel-cell applications,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 1218-1226, 2010.
[16]M. Pavlovsky, S. W. H. de Haan, and J. A. Ferreira, “Design for better thermal management in high-power high-frequency transformers,” in Proc 2005. 14th IAS Annual Meeting, 2005, pp. 2615-2621.
[17]V. Vlatkovic, J. A. Sabate, R. B. Ridley, F. C. Lee, and B. H. Cho, “Small-signal analysis of the phase-shifted PWM converter,” IEEE Trans. power Electron., vol. 7, no. 1, pp. 128-135, 1992.
[18]李奐侖,「燃料電池用之具有複合能量調控直流-直流轉換器研製」,國立台北科技大學電機工程系碩士學位論文,民國九十八年。
[19]趙修科,「開關電源中磁性元件」,2004年。
[20]黃夢谷,「研製具有輸出變壓器與用戶端電壓迴授之交流電源供應器」,國立台北科技大學電機工程系碩士學位論文,民國九十八年。
[21]M. C. Caponet, F. Profumo, R. W. De Doncker, and A. Tenconi, “Low stray inductance bus bar design and construction for good EMC performance in power electronic circuits,” IEEE Trans. power Electron., vol. 17, no. 2, pp. 225-135, 2002.
[22]Texas Instruments, “TMS320F2809 data manual,” SPRS230J , Sept. 2007.
[23]Texas Instruments, “TMS320x280x, 280xx enhanced pulse width modulator(ePWM) module,” SPRU791D, Sept. 2007.
[24]Texas Instruments, “TMS320x280x, 2801x, 2804x DSP system control and interrupts,” SPRU712E , Sept. 2007.
[25]Texas Instruments “TMS320x281x DSP analog-to-digital converter (ADC) reference guide,” SPRU060D , July. 2005.

[A]DMR40功率材料特性表,橫店東磁。
[B]EE65錳鋅目錄表,橫店東磁。
[C]Power Conversion & Line Filter Applications, Micrometals Iron Powder Cores Datasheet, Micrometals, 2007.
[D]IRGP50B60PD1 Datasheet, International Rectifier, 2006.
[E]APT30D60B Datasheet, Advanced Power Technology, 2004.
[F]HCPL-3180 Datasheet , Avago, 2009.
[G]MCP4922 Datasheet, TOSHIBA, 2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top