跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 09:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱建穎
研究生(外文):Jian-Ying Qiu
論文名稱:衝擊熱傳研究及有限時間熱力循環
論文名稱(外文):Analyses on Impinging Heat Transfer and Finite-Time Thermodynamics
指導教授:侯順雄侯順雄引用關係
指導教授(外文):n
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:287
中文關鍵詞:散熱片有限時間熱機
外文關鍵詞:finite-timeheat engineheat sinks
相關次數:
  • 被引用被引用:1
  • 點閱點閱:571
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為兩大部份:
(一)衝擊熱傳研究:探討的方向有二(1)正向衝擊熱傳(2)側(橫)向衝擊熱傳。在正向噴流衝擊熱傳中,將以矩形雙噴管之二維數值作模擬分析,分為矩形單噴管及矩形雙噴管兩項。矩形單噴管的研究中將探討:邊界條件(自由噴流衝擊及半侷限邊界噴流衝擊)及出口條件(展開流及均勻流)對流場的影響;(2)側(橫)向噴流衝擊熱傳,將以三維數值模擬作分析,並以空氣為散熱介質,探討雷諾數、鰭片形狀傾斜和上平板傾斜設計對流場散熱效益的影響
(二)有限時間熱力分析:主要是應用有限時間熱力學,從穩態系統的觀點,以不同目標函數來探討不同熱機之性能最佳化。研究的題目有三:(1)等溫熱源、內可逆迪賽爾熱機之生態學準則函數最佳化(2) 等溫熱源、內可逆奧圖熱機之生態學準則函數最佳化(3) 等溫熱源、內可逆阿京生熱機之生態學準則函數最佳化。

First, the flow and heat transfer characteristics of an impinging laminar slot-jet, twin impinging laminar slot-jets, and heat sinks with sloped plate fins as well as with an inclined confinement surface are investigated by using the Star-CD software.
Parameters examined for a single jet include the width of the jet, Reynolds number, the separation distance between the slot-jet exit plane and the impingement surface, free-jet impingement or semiconfined-jet impingement, uniform inlet flow or fully-developed inlet flow.
An additional parameter, the separation distance between the twin jets is examined for the analysis on the dual jets. In addition, the effects of the titling of the crests of the plate fins relative to the approaching flow and the inclined confinement surface are found to be indeed the two important heat transfer augmentation features.
Secondly, a steady-flow approach in finite-time thermodynamics is employed to investigate the ecological-criterion function optimizations of the endoreversible Diesel, Otto, and Atkinson heat engines with isothermal heat sources. The results show that adopting the ecological-criterion function as the objective function, a heat engine may achieve the balance among the power output, thermal efficiency and entropy generation rate.

中文摘要 A-I
英文摘要 A-II
誌謝 A-III
目錄 A-IV
表目錄 A-VI
圖目錄 A-VII
符號說明 A-XI
第一章緒論 A-1
1-1研究動機 A-1
1-2文獻回顧 A-3
1-2.1衝擊噴流之熱傳研究 A-3
1-2.2散熱鰭片之研究 A-4
1-3本文研究目的 A-6
第二章熱傳分析 A-9
2-1一般熱傳導的分析 A-9
2-2熱擴散方程式 A-10
2-3具均勻截面積散熱片 A-11
2-4散熱片的性能 A-15
2-5具非均勻截面積的散熱片 A-16
2-6散熱片之基本假設 A-18
第三章理論分析 A-24
3-1基本理論與假設 A-24
3-2統御方程式 A-25
3-3紊流模式 A-26
3-4系統之差分方程式 A-29
3-5邊界條件及收斂標準 A-30
3-5.1正向衝擊研究 A-31
3-5.2橫向衝擊熱傳研究 A-34
3-5.3收斂標準 A-36
第四章正向衝擊之結果與討論 A-40
4-1正向衝擊之設定參數 A-40
4-2正向衝擊之格點測試 A-41
4-3正向衝擊之熱傳分析 A-42
第五章橫向衝擊之結果與討論 A-96
5-1橫向衝擊之測試參數 A-96
5-2橫向衝擊之格點測試 A-98
5-3橫向衝擊之流場分析 A-98
5-3.1橫向衝擊之速度場分析 A-99
5-3.2橫向衝擊之溫度場分析 A-99
第六章結論與未來發展 A-146
6-1結論 A-146
6-1.1正向衝擊熱傳之結論 A-146
6-1.2橫向衝擊熱傳之結論 A-148
6-2未來發展 A-150
參考文獻 A-151
中文摘要 B-I
英文摘要 B-II
目錄 B-III
圖目錄 B-IV
符號說明 B-XIII
第一章緒論B-1
1-1前言 B-1
1-2文獻回顧 B-2
1-3本文架構 B-4
第二章等溫熱源內可逆迪賽爾熱機之生態學準則函數最佳化 B-5
2-1理論模型與解法 B-5
2-2結果與討論 B-11
第三章等溫熱源內可逆奧圖熱機之生態學準則函數最佳化 B-41
3-1理論模型與解法 B-41
3-2結果與討論 B-46
第四章等溫熱源內可逆阿京生熱機之生態學準則函數最佳化 B-75
4-1理論模型與解法 B-75
4-2結果與討論B-80
第五章結論 B-114
5-1綜合結論 B-114
參考文獻 B-116
自傳 B-118

[1]Gardner, K.A.,“Efficiency of Extended Surface”, Tarns. ASME, vol.67,1945, pp.621-631.
[2]Heaton H. S. , Reynolds W. C. , Kays W. M. ,“Heat Transfer in Annular Passages Simultaneous Development of Velocity and Temperature Fields in Laminar Flow”, Int. J. Heat Mass Transfer , Vol. 7 , 1964 , pp. 763-781.
[3]Sparrow E. M. , Wong T. C. , “Impigement transfer coefficients due to initially laminar slot jets” , Int. J. Heat Mass Transfer , Vol. 18, 1975, pp. 597-605.
[4] Bejan, A. Heat Transfer. Wiley, New York(1993) , pp. 394-395 ; also in Bejan A. , Convection Heat Transfer, problem 11. Wiley, New York 1984, pp.157.
[5] Nakayama W. ,Matsushima H. and Goel P., Forced convective heat transfer from arrays of finned packages. In Cooling Technology for Electronic Equipment(Edited by Aung W.), pp. 195-210. Hemisphere, New York 1988.
[6]Sami A.S. ,“A numerical study of the flow and heat-transfer characteristics of an impinging laminar slot-jet including crossflow effects”, Int. J. Heat Mass Transfer , Vol. 35 , No. 10 , 1992, pp. 2501-2513.
[7]Jambunathan K. , Lai E. , Moss M. A. , Button B. L. , “A review of heat transfer data for single circular jet impingement” , Int. J. Heat and Fluid Flow , Vol. 13 , No. 2, June , 1992, pp. 106-115.
[8]Morrison, A.T., “Optimization of Heat Sink Fin Geometries for Heat Sinks in Natural Convection”, InterSociety Conference on Thermal Phenomena”, IEEE , 1992, pp.145-148.
[9]Anand N.k. , Kim S.H. and Fletcher L.S. , The effect of plate spacing on free convection between heated parallel plates, J. heat Transfer vol. 114, 1992, pp. 515-518.
[10]Matsushima H., Yanagida T. and Kondo Y., Algorithm for predicting the thermal resistance of finned LSI packages mounted on a circuit board, Heat Transfer Jap.Res.21, 1992, pp. 504-517.
[11]Craft T. J. Graham J. W. ,Launder B. E. ,“Impinging jet studies for turbulence model assessment –II. an examination of the performance of four turbulence models “, Int. J. Heat Mass Transfer , Vol. 36 , No. 10 , 1993, pp. 2685-2697.
[12]Seyedein S. H. ,Hasan M. , Mujumdar A. S. ,“Laminar Flow and Heat Transfer from Multiple Impinging Slot jets with an Inclined Confinement Surface” , Int. J. Heat Mass Transfer , Vol. 37 , No. 13, 1994, pp. 1867-1875.
[13]Lytle D. , Webb B. W. “Air jet impingement heat transfer at low nozzle-plate spacings” , Int. J. Heat Mass Transfer , Vol. 37 , No. 12 , 1994, pp. 1687-1697.
[14]Azar, K. and Mandrone, C.D., “Effect of Pin Fin Density of the Thermal Performance of Unshrouded Pin Fin Heat Sinks”, Transactions of the ASME, vol. 116 , 1994 , pp.306-309.
[15]karagiozis A., Raithby G.D. and Hollands K. G. T. , Natural convection heat transfer from arrays of isothermal triangular fins in air, J. Heat Transfer vol. 116, 1994, pp. 105-111.
[16]Garimella S. V. , Rice R. A. , “Confined and submerged liquid jet impingement heat transfer” , ASME Journal of Heat Transfer Vol. 117 , 1995 , pp. 871-877.
[17]王志賓,“CPU鰭片散熱效應之研究”,國立成功大學工程科學研究所碩士論文,1995年.
[18]Colucci D. W. , Viskanta R. ,“Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet ”, Experimental Thermal and Fluid Science Vol. 13,1996, pp.71-80.
[19]Ledezma, G. and Bejan, A., “Heat sink with sloped plate in natural and forced convection”, Int. J. Heat Mass Transfer, vol.39, no.9, 1996 , pp. 1773-1783.
[20]Shaukatullah, H., Storr, W.R., Hansen, B.J. and Gaynes, M.A., “Design and Optimization of Pin Fin Heat Sinks for Low Velocity Applications”, Twelfth IEEE SEMI-THERM Symposium , 1996 , pp.151-163.
[21]DeWitt, Incropera ,熱傳遞,張仲卿等譯,高立圖書有限公司,台北,1996.
[22]Owsenek B. L. , Cziesla T. , Mitra N. K. , Biswas G. ,“Numerical Investigation of Heat Transfer in Impinging Axial and Radial jets with Superimposed Swirl”, Int. J. Heat Mass Transfer , Vol. 40 , No. 1 , 1997 , pp. 141-147.
[23]Lin Z. H. , Chou Y. J. , Hung Y. H. ,”Heat Transfer Behaviors of a Confined Slot jet Impingement” , Int. J. Heat Mass Transfer , Vol. 40 , No. 5 , 1997, pp. 1095-1107.
[24]Wirtz, R.A., Sohal, R. and Wang, H., ”Thermal Performance of Pin-Fin Fan-Sink Assemblies”, Journal of Electronic Packaging, vol.119, 1997, pp.26-31.
[25]Behnia M. , Parneix S. , “Prediction of heat transfer in an axisymmetric turbulent jet impinging on a flat plate” , Int. J. Heat Mass Transfer , Vol. 41 , No. 12 , 1998 , pp. 1845-1855.
[26]Wirtz, R.A. and Zheng, N., “Methodology for Predicting Pin-Fin Fan-Sink Performance”, InterSociety Conference on Thermal Phenomena, IEEE , 1998 , pp.303-309.
[27]Parneix S. , Behnia M. , Durbin P. A. ,“Predictions of turbulent heat transfer in an axisymmetric jet impinging on a heated pedestal“ , ASME Journal of Heat Transfer Vol. 121 , 1999 , pp. 43-49.
[28]Beitelmal A. H. , Saad M. A. , Patel C. D. ,”The Effect of Inclination on the Heat Transfer Between a Flat Surface and an Impinging Two-dimensional Air Jet” , Int. J. Heat and Fluid Flow , Vol. 21, 2000, pp. 156-163.
[29]Maveety J. G. , Jung H. H. ,“Design of an optimal pin-fin heat sink with air impingement cooling” , Int. Comm. Heat Mass Transfer , Vol. 27 , No.2 , 2000, pp. 229-240.
[30]Sikka, K.K., Torrance, K.E., Scholler, C.U. and Salanova, P.I., “Heat Sinks With Fluted and Wavy Plate Fins in Natural and Low-Velocity Forced Convection”, IEEE Transactions on components and packaging, vol.25, no.2, June 2002.
[31]Chiriac, V. A. , Ortega A. ,”A numerical study of the unsteady flow and heat transfer in a transitional confined slot jet impinging on an isothermal surface” , Int. J. Heat and Mass Transfer , Vol. 45, 2002 , pp. 1237-1248.

有限時間熱力分析之參考文獻
[1]Novikov, .I. I., ”The Efficiency of Atomic Power Stations ,”Journal of Nuclear Energy II, Vol. 7, pp. 125-128,1958.;(translated from Atomnaya Energiya, Vol. 3, No. 11,1957, pp. 409.)
[2]EI-Wakil, M. M., Nuclear Power Engineering, Mcgraw-Hill , New York,1962, pp. 162-165.
[3]EI-Wakil, M. M., Nuclear energy conversion, International Textbook Company,Scranton,pa,1971, pp. 31-35.
[4]Curzon, F. L. and Ahlborn, B., “Efficiency of a Carnot Engine at maximum Power Output,” American Journal of Physics, Vol. 43, No. 1,1975, pp.22-24.
[5]Rubin,M. H., Ondrechen , M. J . and Bamd, Y.B., “The Generalized Carnot Cycle –a Working Fluid Operating in Finite Time between Finite Heat Sources and Sinks,” Journal of Chemical Physics, Vol. 78, No. 7, 1983, pp.
4721-4727.
[6]Andersen , B., Berry, R. S. and Rubin, M. H., "Availability for Finite-time Processes- General Theory and a Model ,”Journal of Physical, Vol. 87, No. 15, 1983, pp. 2704-2713.
[7]De Vos, A., “Efficiency of Some Heat Engines at Maximum-Power conditions. ”Journal of Physical, Vol. 53, No. 6, 1985, pp. 570-573
[8]Gordon, J., “Observations on Efficiency of Heat Engines Operating at Maximum Power ,” American Journal of Physical, Vol. 58, No. 4, 1990, pp. 370-375.
[9]Ibrahim, O. M., Klein, S. A., and Mitchell, J.W., ”Optimum Power Cycles for Specified Boundary Conditions,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 113, No. 4, 1991, pp. 514-521.
[10]Angulo-Brown, F., ”An Ecological Optimization Criterion for Finite-Time Heat Engines, “Journal of Applied Physics,Vol.69,No.11,1991,pp.7465-7469.
[11]Yan, Z., “Comment on ‘An Ecological Optimization Criterion for Finite-Time Heat Engines ‘, ”Journal of Applied Physical, Vol. 73, No. 7, 1993, pp. 38-53.
[12]Chen L., Wu c., Sun F. and Cao S.,”Heat Transfer Effects on The net Work output and Efficiency Characteristics for an Air-Standard Otto Cycel,”Energy Convers. Mgmt Vol. 39, No 7,1998, pp. 643-648.
[13]Cheng C. and Chen C., “Ecological Optimization of an Endoreversible Brayton cycle,” Energy Convers. Mgmt Vol. 39, No 1/2,1998, pp.33-44.
[14]Bhattacharyya S., “Optimizing an irreversible Diesel cycle Fine tuning of Compression ratio and Cut-off ratio,” Energy Convers. Mgmt 41,2000, pp.847-854.
[15]Akash B.A., “Effect of Heat Transfer on the Performance of an Air-standard Diesel cycle,” Int. Comm. Heat Transfer , Vol. 28, No1,2001,pp. 87-95.
[16]ahin B., zsoysa O., S O., “A Comparative Performance Analysis of Endoreversible dual cycle under Maximum Ecological function and maximum power conditions,” exergy an International Journal , 2002, pp. 173-185.
[17]Zheng J., Chen L., Sun F., “Power and Efficiency Performance of an Endoreversible Braysson cycle,” Int. J. Therm. Sci. 41 , 2002 , pp.201-205.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top