跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/31 20:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁崑鑫
論文名稱:以突變的方式改善 ω-transaminase 酵素之產物抑制
論文名稱(外文):Improved product inhibition of ω-transaminase by gene mutation
指導教授:高肇鴻
口試委員:高肇鴻許文輝楊武勇廖慧芬蕭乃文
口試日期:2017-01-13
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:67
中文關鍵詞:突變株
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
  (1R, 2S)-Norephedrine 是一種天然的生物鹼,在醫學上用作於類交感神經的藥物,並且可以做為治療狗的尿失禁藥物,其衍生物可以做為 HIV 病毒的反轉錄抑制劑 Efavirenz 的合成以及開發中藥物 Mivobulin isethionate 的合成上,因此我們想要以簡單的生物合成方式來生成具特定光學活性的 (1R, 2S)-norephedrine。於先前的研究中本實驗室已由 Chromobacterium violaceum 菌種中篩選到兩個具有轉換能力之基因,並將其構築於 E. coli 表現系統中;然而,研究發現此基因表現之重組酵素於轉換過程中會受到產物 (1R, 2S)-norephedrine 的影響而使轉換活性受限。因此,本實驗利用蛋白質結構模擬 (protein structure modeling) 及蛋白質對接 (protein docking) 等方式,來預測可能參與活性反應或產物抑制之重要胺基酸殘基 (residues),再輔以突變的方式試圖改善這個問題。
  利用上述方式我們已由 C. violaceum (Cv) 之 ω-transaminase (ω-TA) 蛋白質中找出預測可能可以增加酵素活性或減少產物抑制性的胺基酸殘基,並建立兩種快速篩選的方法來篩選具有活性的菌株,分別為 TTC assay 及薄層色譜法。由結構模擬的結果中發現發現產物相互作用並可能影響轉換活性的胺基酸殘基,分別為 Cv W188、Cv E372 及 Cv L393。在活性提升部分,發現 Cv ω-TA 的突變株以 Cv D372E 及 Cv L393M 的轉換率較高,轉換率分別為 55.4% 及 54.0%。在產物抑制改善部分,Cv ω-TA 的突變株中以 Cv L393M 改善最多,IC50 從11.3 mM 提高為 16.2 mM。從上述結果得知,本實驗成功選殖不同的突變株,且具改善產物抑制的問題,期望對未來的研究有所幫助。

  (1R, 2S)-Norephedrine is a naturally occurring alkaloid which is used as sympathomimetic drugs. The pharmacological can be treatment of urinary incontinence in dogs. Moreover, (1R, 2S)-norephedrine and its derivatives are of great significance as chiral auxiliaries in a variety of asymmetric reaction, especially in the synthesis of the HIV reverse transcriptase inhibitor, Efavirenz, and development of antineoplastic agents, Mivobulin isethionate. Accordingly, we want to develop a simple and convenient biosynthetic method for the optically active norephedrine that is meaningfully. According to previous research, we found two enzyme which had conversion acticity from Chromobacterium violaceum, and we found that (1R, 2S)-norephedrine were limited conversion activity. We used the way of protein structure and protein docking to predicting amino acid residues that may be involved in an active reaction or product inhibitiong, and used mutation to improve this problem.
  Using the above method, we have found amino acid residues predicted from the ω-transaminase (ω-TA) of C. violaceum (Cv) which may increase the activity of the enzyme or decrease the product inhibiton, and two high-throughput screen methods, TTC assay and thin layer chromatography were searched active strains. From the results of structural modeling, it was found that the amino acid residues, Cv W188, Cv D372, and Cv L393 will interact with the product and which may affect the conversion activity. In the part of increased the conversion activity, the mutant of Cv ω-TA had higher conversion rate of Cv D372E and Cv L393M, the conversion rate was 55.4% and 54.0%, respectively. And in the part of improved product inhibition, Cv ω-TA mutant strain showed the most improvement with Cv L393M, IC50 value from 11.3 mM to 16.2 mM. It was concluded that the mutant strains were successfully cloned, which could improve the inhibition of the products, and found that the binding position of the non-competitive products was inhibited. It is expected to be helpful to the future research.

摘要 I
Abstract II
表目錄 V
圖目錄 VI
前言 1
一、Norephedrine 的簡介 1
二、(1R, 2S)-Norephedrine 的應用與市場 2
三、(1R, 2S)-Norephedrine 合成方法 3
四、轉胺酶簡介及其應用 5
五、蛋白質結構 8
六、研究動機 9
材料與方法 11
一、化學藥物、菌種、培養基 11
二、一般通用實驗方法 11
三、分析方法及條件 15
四、L-PAC的生合成及回收 15
五、ω-transaminase突變基因選殖及活性篩選 16
六、以全細胞轉換 L-PAC 生產 (1R, 2S)-norephedrine之分析 17
七. 純化 (1R, 2S)-norephedrine 18
結果 19
一、ω-transaminase 蛋白質結構模擬及突變點篩選 19
二、ω-transaminase 活性篩選及酵素特性分析 20
三、產物濃度對菌體轉換能力之影響 22
四、純化 (1R, 2S)-norephedrine 22
討論 24
一、ω-transaminase 蛋白質結構模擬及突變株篩選 24
二、ω-transaminase 突變株活性快速篩選方法 25
三、產物濃度對菌體轉換活性之影響 26
四、純化 (1R, 2S)-norephedrine 27
結論 28
參考文獻 29


1.Grue-Soerensen, G., et al., 1994, Biosynthetic route to the Ephedra alkaloids. Journal of the American Chemical Society, 116(14): p. 6195-6200.
2.Flavahan, N.A., 2005, Phenylpropanolamine Constricts Mouse and Human Blood Vessels by Preferentially Activating α2-Adrenoceptors. Journal of Pharmacology and Experimental Therapeutics, 313(1): p. 432-439.
3.Wellman, P.J., et al., 1991, Reversal of phenylpropanolamine anorexia in rats by the alpha-1 receptor antagonist benoxathian. Pharmacology Biochemistry and Behavior, 38(4): p. 905-908.
4.Kernan, W.N., et al., 2000, Phenylpropanolamine and the risk of hemorrhagic stroke. New England Journal of Medicine, 343(25): p. 1826-1832.
5.SoRelle, R., 2000, FDA warns of stroke risk associated with phenylpropanolamine; cold remedies and drugs removed from store shelves. Circulation, 102(21): p. E9041.
6.Meadows, M., 2001, FDA issues public health advisory on phenylpropanolamine in drug products. FDA consumer, 35(1): p. 9.
7.Claeys, S., et al., 2011, Clinical evaluation of a single daily dose of phenylpropanolamine in the treatment of urethral sphincter mechanism incompetence in the bitch. The Canadian Veterinary Journal, 52(5): p. 501.
8.Scott, L., et al., 2002, Evaluation of phenylpropanolamine in the treatment of urethral sphincter mechanism incompetence in the bitch. Journal of Small Animal Practice, 43(11): p. 493-496.
9.White, R., et al., 1989, Phenylpropanolamine: an alpha-adrenergic agent for the management of urinary incontinence in the bitch associated with urethral sphincter mechanism incompetence. The Veterinary record, 125(19): p. 478-480.
10.Yan, G., et al., 2007, Synthesis of novel chiral oxazoline ligands and application in the highly enantioselective diethylzinc addition to< i> N-diphenylphosphinoylimines. Tetrahedron: Asymmetry, 18(22): p. 2643-2648.
11.Vervisch, K., et al., 2010, Synthesis of stereodefined piperidines from aziridines and their transformation into conformationally constrained amino acids, amino alcohols and 2, 7-diazabicyclo [3.3. 1] nonanes. The Journal of organic chemistry, 75(22): p. 7734-7744.
12.Ishihara, M., et al., 2007, Direct oxidative conversion of aldehydes and alcohols to 2-imidazolines and 2-oxazolines using molecular iodine. Tetrahedron, 63(6): p. 1474-1480.
13.Liu, H., et al., 2009, Recent Advances in the Synthesis of 2‐Imidazolines and Their Applications in Homogeneous Catalysis. Advanced Synthesis & Catalysis, 351(4): p. 489-519.
14.Kim, D.J., et al., 2003, A new approach to the synthesis of optically active norephedrine, norpseudoephedrine and cathinone via double asymmetric induction. BULLETIN-KOREAN CHEMICAL SOCIETY, 24(11): p. 1641-1648.
15.Bollu, R.B., et al. 2012 Efficient process to induce enantioselectivity in procarbonyl compounds. US20120264933
16.Chen, C.Y., et al. 1999 Efficient synthesis of a chiral mediator. US5856492
17.全球抗HIV藥物開發狀況和市場分析 (醫藥經濟資訊網, www.ebiotrade.com).
18.Bristol-Myers Squibb (http://www.bms.com/landing/data/index.html).
19.Bristol-Myers Squibb (http://investor.bms.com/investors/financial-information/annual-reports/default.aspx).
20.A. Graul, A.M.M., J. Castañer, 1997, Mivobulin Isethionate. Drugs of the Future, 22(9).
21.Fraley, M.E., et al. 2006 Mitotic kinesin inhibitors. US 7060705
22.Almog, N., et al. 2012 Compositions and methods for treating neoplasia. WO2012027462
23.Koeplinger, K.A., et al. 2003 Targeted drug delivery using sulfonamide derivatives. EP0909184
24.Krizevski, R., et al., 2010, Composition and stereochemistry of ephedrine alkaloids accumulation in< i> Ephedra sinica Stapf. Phytochemistry, 71(8): p. 895-903.
25.Hoover, F.W., et al., 1947, Synthesis of 2-amino-1-phenyl-1-propanol and its methylated derivatives. The Journal of organic chemistry, 12(4): p. 506-509.
26.West, D.D. 1999 2-amino-1-phenylpropanols, stereospecific synthesis thereof, and method of optically resolving the same. US5962737
27.Gollapudy, S., et al. 2008 Process for preparation of optically active 1-erythro-2-amino-1-phenyl-1-propanol. WO2005100299 A1
28.Satianegara, G., et al., 2006, Enzymatic (R)-phenylacetylcarbinol production in a benzaldehyde emulsion system with Candida utilis cells. Applied microbiology and biotechnology, 70(2): p. 170-175.
29.Engel, S., et al., 2003, Acetohydroxyacid synthase: A new enzyme for chiral synthesis of R‐phenylacetylcarbinol. Biotechnology and bioengineering, 83(7): p. 833-840.
30.Khan, M.A., et al., 2012, Studies on the production of L-phenylacetylcarbinol by Candida utilis in shake flask. Pak J Bot, 44: p. 361-364.
31.Sehl, T., et al., 2013, Two steps in one pot: enzyme cascade for the synthesis of nor (pseudo) ephedrine from inexpensive starting materials. Angewandte Chemie International Edition, 52(26): p. 6772-6775.
32.林建鑫, 2012, 篩選 ω-transaminase 俾應用於具光學活性去甲麻黃鹼之生合成. 碩士論文,生物科技研究所,弘光科技大學,台中。.
33.Carvalho, N.B., et al., 2010, cheminform. abstract: the use of aminotransferases for the production of chiral amino acids and amines. ChemInform.
34.Herrmann, K.M., et al.,1983, Amino acids: biosynthesis and genetic regulation. Vol. 3. Addison Wesley Publishing Company.
35.Chao, Y.P., et al., 1999, Enhanced Conversion Rate of l‐Phenylalanine by Coupling Reactions of Aminotransferases and Phosphoenolpyruvate Carboxykinase in Escherichiacoli K‐12. Biotechnology progress, 15(3): p. 453-458.
36.Malik, M.S., et al., 2012, Features and technical applications of ω-transaminases. Applied microbiology and biotechnology, 94(5): p. 1163-1171.
37.Tufvesson, P., et al., 2011, Process considerations for the asymmetric synthesis of chiral amines using transaminases. Biotechnology and Bioengineering, 108(7): p. 1479-1493.
38.Taylor, P.P., et al., 1998, Novel biosynthetic approaches to the production of unnatural amino acids using transaminases. Trends in biotechnology, 16(10): p. 412-418.
39.Kaulmann, U., et al., 2007, Substrate spectrum of ω-transaminase from< i> Chromobacterium violaceum DSM30191 and its potential for biocatalysis. Enzyme and microbial technology, 41(5): p. 628-637.
40.Christen, P., et al., 2001, From cofactor to enzymes. The molecular evolution of pyridoxal‐5′‐phosphate‐dependent enzymes. The Chemical Record, 1(6): p. 436-447.
41.Hwang, B.-Y., et al., 2005, Revisit of aminotransferase in the genomic era and its application to biocatalysis. Journal of Molecular Catalysis B: Enzymatic, 37(1): p. 47-55.
42.Koszelewski, D., et al., 2010, ω-Transaminases for the synthesis of non-racemic α-chiral primary amines. Trends in biotechnology, 28(6): p. 324-332.
43.Matcham, G.W., et al. 1990 Enantiomeric enrichment and stereoselective synthesis of chiral amines. US4950606
44.Shin, J.-S., et al., 2003, Purification, characterization, and molecular cloning of a novel amine: pyruvate transaminase from Vibrio fluvialis JS17. Applied microbiology and biotechnology, 61(5-6): p. 463-471.
45.Ito, N., et al., 2011, Purification and characterization of a novel (S)-enantioselective transaminase from Pseudomonas fluorescens KNK08-18 for the synthesis of optically active amines. Bioscience, biotechnology, and biochemistry, 75(11): p. 2093-2098.
46.Park, E., et al., 2010, One‐Pot Conversion of L‐Threonine into L‐Homoalanine: Biocatalytic Production of an Unnatural Amino Acid from a Natural One. Advanced Synthesis & Catalysis, 352(18): p. 3391-3398.
47.Shin, J.-S., et al., 1999, Asymmetric synthesis of chiral amines with w-transaminase. Biotechnology and bioengineering, 65(2): p. 206-211.
48.Ingram, C., et al., 2007, One‐pot synthesis of amino‐alcohols using a de‐novo transketolase and β‐alanine: Pyruvate transaminase pathway in Escherichia coli. Biotechnology and bioengineering, 96(3): p. 559-569.
49.Fuchs, M., et al., 2010, Chemoenzymatic asymmetric total synthesis of (S)-Rivastigmine using ω-transaminases. Chemical Communications, 46(30): p. 5500-5502.
50.Savile, C.K., et al., 2010, Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science, 329(5989): p. 305-309.
51.Park, E.-S., et al., 2014, Active site model of (R)-selective ω-transaminase and its application to the production of d-amino acids. Applied microbiology and biotechnology, 98(2): p. 651-660.
52.Protein Data Bank (http://www.rcsb.org/pdb/home/home.do).
53.Kendrew, J.C., et al., 1958, A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis. Nature, 181(4610): p. 662-666.
54.Wüthrich, K., 1990, Protein structure determination in solution by NMR spectroscopy. Journal of Biological Chemistry, 265(36): p. 22059-62.
55.Kuhlbrandt, W., 2014, Cryo-EM enters a new era. Elife, 3: p. e03678.
56.Humble, M.S., et al., 2012, Crystal structures of the Chromobacterium violaceumomega-transaminase reveal major structural rearrangements upon binding of coenzyme PLP. Febs j, 279(5): p. 779-92.
57.Midelfort, K.S., et al., 2013, Redesigning and characterizing the substrate specificity and activity of Vibrio fluvialis aminotransferase for the synthesis of imagabalin. Protein Eng Des Sel, 26(1): p. 25-33.
58.Sayer, C., et al., 2013, Structural studies of Pseudomonas and Chromobacterium omega-aminotransferases provide insights into their differing substrate specificity. Acta Crystallogr D Biol Crystallogr, 69(Pt 4): p. 564-76.
59.van Oosterwijk, N., et al., 2016, Structural basis of substrate range and enantioselectivity of two (S)-selective omega-transaminases. Biochemistry.
60.Rausch, C., et al., 2013, Crystal structure of the omega-aminotransferase from Paracoccus denitrificans and its phylogenetic relationship with other class III aminotransferases that have biotechnological potential. Proteins, 81(5): p. 774-87.
61.Kaulmann, U., et al., 2007, Substrate spectrum of ω-transaminase from Chromobacterium violaceum DSM30191 and its potential for biocatalysis. Enzyme and Microbial Technology, 41(5): p. 628-637.
62.Kao, C.-H., et al. 2012 Biosynthesis methods of norephedrine with specific optical activities. US20130309732
63.Wu, X., et al., 2014, Enzymatic synthesis of l-norephedrine by coupling recombinant pyruvate decarboxylase and ω-transaminase. Applied microbiology and biotechnology: p. 1-10.
64.TAO, J.R.a.B.Y., 1992, Polymerase chain reaction (PCR) techniques for site-directed mutagenesis. Biotechnology Advances, 10: p. 535-547.
65.Laemmli, U.K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. nature, 227(5259): p. 680-685.
66.Breuer, M., et al., 2002, High-throughput assay of (R)-phenylacetylcarbinol synthesized by pyruvate decarboxylase. Anal Bioanal Chem, 374(6): p. 1069-73.
67.王寶琴,蘇健,韓敏彩,馬騰, 2004, 麻黃及其製劑中麻黃類生物鹼的含量測定方法研究進展. 中國中醫藥信息雜誌, 11(3): p. 274-275.
68.Hwang, B.-Y., et al., 2004, High-throughput screening method for the identification of active and enantioselective ω-transaminases. Enzyme and Microbial Technology, 34(5): p. 429-436.
69.Kwon, Y.C., et al., 2010, Cloning-independent expression and analysis of omega-transaminases by use of a cell-free protein synthesis system. Appl Environ Microbiol, 76(18): p. 6295-8.
70.陳怡妏, 2010, 以具有乙醯羥酸合成酶 I 活性之全細胞生物轉換系統應用於 L-苯基乙酰基甲醇的生合成. 碩士論文,生物科技研究所,弘光科技大學,台中。.
71.黎佳臻, 2015, 利用微生物來源之 transaminases 立體選擇性生產去甲麻黃鹼. 碩士論文,生物科技研究所,弘光科技大學,台中。.
72.SWISS-MODEL (https://swissmodel.expasy.org/).
73.Cassimjee, K.E., et al., 2012, Chromobacterium violaceum omega-transaminase variant Trp60Cys shows increased specificity for (S)-1-phenylethylamine and 4'-substituted acetophenones, and follows Swain-Lupton parameterisation. Org Biomol Chem, 10(28): p. 5466-70.
74.Shin, J.-S., et al., 2001, Kinetic resolution of chiral amines using packed-bed reactor. Enzyme and microbial technology, 29(4): p. 232-239.
75.Asinger, F., et al. 1976 Resolution of D,L-protected-penicillamine. US3966752
76.Yun, H., et al., 2005, Use of enrichment culture for directed evolution of the Vibrio fluvialis JS17 omega-transaminase, which is resistant to product inhibition by aliphatic ketones. Appl Environ Microbiol, 71(8): p. 4220-4.
77.Cho, B.K., et al., 2008, Redesigning the substrate specificity of omega-aminotransferase for the kinetic resolution of aliphatic chiral amines. Biotechnol Bioeng, 99(2): p. 275-84.
78.Humble, M.S., et al., 2012, Key Amino Acid Residues for Reversed or Improved Enantiospecificity of an ω-Transaminase. ChemCatChem, 4(8): p. 1167-1172.
79.Svedendahl, M., et al., 2010, Reversed Enantiopreference of an ω-Transaminase by a Single-Point Mutation. ChemCatChem, 2(8): p. 976-980.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top