跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.56) 您好!臺灣時間:2025/12/10 06:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林琪皓
研究生(外文):Lin, Chi-Hao
論文名稱:以光電法與電容法發展液晶生物檢測的定量分析
論文名稱(外文):Electro-Optical and Capacitive Measurements for Quantitative Analysis of Liquid-Crystal-Based Biosensing
指導教授:李偉李偉引用關係李孟娟李孟娟引用關係
指導教授(外文):Lee, WeiLee, Mon-Juan
口試委員:楊介雄陳志欣
口試委員(外文):Yang, Kei-HsiungChen, Chih-Hsin
口試日期:2016-02-02
學位類別:碩士
校院名稱:國立交通大學
系所名稱:影像與生醫光電研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:52
中文關鍵詞:液晶生物檢測量化分析牛血清蛋白
外文關鍵詞:liquid crystalbiosensingquantative analysisBSA
相關次數:
  • 被引用被引用:1
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
在液晶生物檢測技術這塊領域中,利用光學紋理去做生物檢測是目前的核心技術,但利用光學紋理僅能以樣品在正交偏光板下的亮暗態判斷生物分子的存在與否,並無法對不同濃度下的液晶生物檢測樣品做出精準的量化。有鑑於此,吾人以液晶材料之電控雙折射與介電特性,針對液晶生物感測技術,在本碩論中分別提出以光電法與電容法,發展可定量分析生物分子濃度的液晶生物感測技術。實驗中所使用的生物分子為牛血清蛋白,偵測平台則為具高雙折射率的正型液晶HDN。
實驗結果顯示,光電法與電容法對於生物分子濃度的偵測極限分別為106 g/ml與109 g/ml,其差別取決於將蛋白質附著於基板上的方式。針對光電量測法,吾人以旋轉塗佈的方式使蛋白質附著於含DMOAP的導電玻璃基板上,避免因光散射造成相位計算上的誤差。透過量測待測樣品在正交偏光板下之電壓相依的穿透率曲線並藉此計算各樣品的相位變化,本研究計算樣品的有效折射率與液晶材料的雙折射率比值,定義出一個N值,評估液晶分子排列受蛋白質濃度影響的程度。
另一方面,電容法所使用的樣品將使用傳統的液滴法將蛋白質附著於基板上。經由量測樣品電容值隨電壓的變化,可得到電容在高電壓時的最大值(Cmax)以及計算電容值變化量(ΔC)。實驗結果指出,吾人可經由在交流電場驅動下,電容值變化量與電容最大值的比值(ΔC/ Cmax),分析液晶傾角變化與蛋白質濃度的關係,判斷附著在垂直配向基板上的牛血清蛋白的濃度,達到量化分析。

The texture observation has long been the core technique in liquid crystal (LC)-based biosensing. However, quantitative analysis of this method for determining the biomolecular concentration can hardly be realized since the existence of biomolecules immobilized on the substrate is examined in accordance with the brightness of optical textures. In considering with the electrical response of birefringence and dielectric anisotropy of LC materials, in this study, two approaches―electro-optical and capacitive measurements, are proposed specifically for quantitative analysis of LC-based biosensing. Here, the biomolecule used is bovine serum albumin (BSA), a protein standard commonly used in the assay of protein concentration, and the LC material used as the sensing platform is highly birefringent HDN with positive dielectric anisotropy.
Experimental results indicate that the detection limit of the BSA concentration is 106 g/ml for the electro-optical measurement and is 109 g/ml for the electric capacittance measurement. The difference between the detection limit of the two measurements stems from the method used for the immobilization of BSA on the DMOAP-coated substrates. For the electro-optical measurement, the BSA biomolecules were spin-coated on the substrate to reduce percentage error on the calculation of phase retardation, attributable to the light scattering. By measuring voltage-dependent transmission (VT) curves and calculating phase retardations of experimental samples, we propose an N value, defined as the ratio of the effective refractive index of the sample to the birefringence of the LC material, to quantitatively estimate the influence of the BSA concentration on the orientation of LC molecules. On the other hand, samples used for the capacitive measurement were prepared using droplets to attach protein on the substrates. Experimental results based on the voltage-dependent capacitive (VC) curves render information on the maximum capacitance Cmax and the capacitance difference ΔC. Furthermore, a quantitative value defined as the ratio of Cmax to ΔC of a sample driven by external AC voltages is calculated to analyze the relationship between the LC tilted angle and the BSA concentration.

目   錄
摘   要 i
ABSTRACT iii
誌   謝 v
目   錄 vii
表 目 錄 x
圖 目 錄 xi
第一章 緒論 1
1.1前言 1
1.2研究目的 2
1.3文獻回顧 2
1.4專利分析 5
1.5論文架構 9
第二章 理論基礎與文獻探討 10
2.1液態晶體 10
2.1.1液晶起源與分類 10
2.1.2液晶材料的物理特性 14
2.2液晶在生物感測上的應用 16
2.3液晶元件光穿透 17
2.4液晶元件電容 19
2.5液晶生物感測的量化技術 19
第三章 樣品製備與實驗方法 20
3.1實驗材料 20
3.2實驗儀器 21
3.3樣品製備 23
3.3.1清洗玻璃基板 23
3.3.2配向膜 23
3.3.3滴有蛋白質之液晶盒製作24
3.4實驗裝置與量測 26
3.4.1液晶免疫檢測 26
3.4.2交流電壓對光穿透度之測量26
3.4.3交流電壓對電容值之測量 28
第四章 結果與討論 29
4.1偏光顯微鏡觀察 29
4.1.1旋轉塗佈蛋白質分子 29
4.1.2液滴蛋白質分子 32
4.2液晶生物檢測之光穿透度與電壓的關係35
4.3液晶生物檢測之電容與電壓的關係 38
4.3.1靜態介電頻譜 38
4.3.2 BSA之電容法的偵測範圍 40
4.3.3蛋白質濃度對應液晶傾倒角度之量化關係 43
4.4 液晶生物檢測之光電法與電容法的比較 45
5.1結論 47
5.2未來展望 48
參考文獻 49

參考文獻
[1] C. Clark and C. Lyois, “Electrode system for continuous monitoring in cardiovascular surgery,” Annals of the New York Academy of Sciences 102, 29–33 (1962).
[2] C. A. Rowe and L. M. Tender, “Array biosensor for simultaneous identification of bacterial, viral, and protein analytes, ” Analytical Chemistry 71(17), 3846–3852 (1999)
[3] X. Bi, S. L. Lai, and K.-L. Yang, “Liquid crystal multiplexed protease assays reporting enzymatic activities as optical bar charts,” Analytical Chemistry 81(13), 5503–5509 (2009).
[4] B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides:  amplification of protein−peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
[5] S. Yang, Y. Liu, H. Tan, C. Wu, Z. Wu, G. Shen, and R. Yu, “Gold nanoparticle based signal enhancement liquid crystal biosensors for DNA hybridization assays,” Chemical Communications 48(23), 2861–2863 (2012).
[6] C.-H. Chen and K.-L. Yang, “Liquid crystal-based immunoassays for detecting hepatitis B antibody,” Analytical Biochemistry 421(1), 321–323 (2012).
[7] J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals,” Science 302(5653), 2094–2097 (2003).
[8] S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses,” Advanced Functional Materials 19(14), 2260–2265 (2009).
[9] A. Hussain, A. S. Pina, and A. C. A. Roque, “Bio-recognition and detection using liquid crystals,” Biosensors and Bioelectronics 25(1), 1–8 (2009).
[10] 孫士弘,《使用高複折射率液晶以提升癌症生物標記CA125之液晶免疫檢測靈敏度》,碩士論文,國立交通大學影像與生醫光電研究所,民國102年。林宏達,《含特殊金屬中心辦盤狀及盤狀》,碩士論文,國立中央大學化學研究所,民90年6月。
[11] Y.-C. Hsiao, Y.-C. Sung, M.-J. Lee, and W. Lee “Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal,” Biomedical Optics Express 4(1), 5033-5038(2015).
[12] H. Xu, J. Wu, C. H. Chen, L. Zhang, and K.-L. Yang, “Detecting hydrogen sulfide by using transparent polymer with embedded CdSe/CdS quantum dots,” Sensors and Actuators B: Chemical 143(2), 535–538 (2010).
[13] C.-H. Chen and K.-L. Yang, “A liquid crystal biosensor for detecting organophosphates through the localized pH changes induced by their hydrolytic products,” Sensors and Actuators B: Chemical 181, 368–374 (2013).
[14] W. Khan, J. H. Choi, G. M. Kim, and S. Y. Park, “Microfluidic formation of pH responsive 5CB droplets decorated with PAA-b-LCP,” Lab on a Chip 11(20), 3493–3498 (2011).
[15] C. H. Chen and K. L. Yang, “Liquid crystal-based immunoassays for detecting hepatitis B antibody,” Analytical Biochemistry 421(1), 321–323 (2012).
[16] M.-J. Lee, H.-W. Su, S.-H. Sun, and W. Lee, “Ultrahigh sensitivity in liquid-crystal-based immunodetection by surface modification of the alignment layer,” Proceedings of SPIE 9182, Liquid Crystals XVIII (2014)
[17] 蘇慧汶,《開發高靈敏度之液晶感測器以應用於癌症生物標記CA-125之無標記免疫偵測》,碩士論文,國立交通大學影像與生醫光電研究所,民102年6月。
[18] F. Reinitzer, “Beiträge zur Kenntnis des Cholesterins,” Monatshefte für Chemie 9, 421–441 (1888). C. H. Chen, and K. L. Yang, “Liquid crystal-based immunoassays for detecting hepatitis B antibody,” Analytical Biochemistry 421(1), 321–323 (2012).
[19] O. Lehmann, “Über fliessende Krystalle,” Zeitschrift für Physikalische Chemie 4, 462–468 (1889).
[20] P. J. Collings and M Hird, Introduction to Liquid Crystals: Chemistry and Physics ( London:Taylor :Francis 1997).
[21] T. Y. Puttewar, A. A. Shinde, and R. Y. Patil,“A Review on liquid crystals‒a novel drung delivery system,” Advance Research in Pharmaceuticals and Biologicals 4, 571‒575 (2014).
[22] T. J. Sluckin, “The liquid crystal phases: Physics and technology,” Contemporary Physics 41(1), 37–56 (2010).
[23] 林宏達,《含特殊金屬中心辦盤狀及盤狀》,碩士論文,國立中央大學化學研究所,民90年6月。
[24] 許民宗,《高精密液晶顯示元件間隙量測》,碩士論文,國立中央大學物理研究所,民國92年。
[25] T. Kato, “Self-assembly of phase-segregated liquid crystal structures,” Science 295(5564), 2414–2418 (2002).
[26] T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Optics Express 11(20), 2589–2596 (2003).
[27] S. J. Woltman, G. D. Jay, and G. P. Crawford “Liquid-crystal materials find a new order in biomedical applications,” Nature Materials 6, 929-938 (2007).
[28] http://www.twwiki.com/wiki/%E7%89%9B%E8%A1%80%E6%B8%85%E7%99%BD%E8%9B%8B%E7%99%BD
[29] X. Bi and K.-L. Yang, “Liquid crystals decorated with linear oligopeptide FLAG for applications in immunobiosensors,” Biosensors and Bioelectronics 26(1), 107–111 (2010).
[30] S.-L. Lai and K.-L. Yang, “Detecting DNA targets through the formation of DNA/CTAB complex and its interactions with liquid crystals,” Analyst 136(16), 3329–3334 (2011).
[31] S.-L. Lai, W.-L. Tan, and K.-L. Yang, “Detection of DNA targets hybridized to solid surfaces using optical images of liquid crystals,” ACS Applied Materials and Interfaces 3(9), 3389–3395 (2011).
[32] S.-H. Sun, M.-J. Lee, Y.-H. Lee, and W. Lee “ High-birefringence liquid crystal for improved sensitivity and reliability in liquid crystal-based immunoassay of the cancer biomarker CA125,” 25th International Liquid Crystal Conference (2014).
[33] F. J. Kahn, “Orientation of liquid crystals by surface coupling agents,” Applied Physics Letters 22(8), 386–388 (1973).
[34] 邱士晉,《不同比率混合之雙溶劑於混合矽烷溶液中對可調預傾角液晶盒》,碩士論文,國立成功大學光電科學與工程研究所,民國97年。
[35] 巫崇印,《層化高分子/液晶複合薄膜之直流電場效應》,碩士論文,私立中原大學物理研究所,民國九十七年七月。
[36] H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” Journal of Biomedical Optics 19(7), 077006 (2014).
[37] W. Lee, C.-Y. Wang, and Y.-C. Shih,“Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Applied Physics Letters 85(4), 513‒515 (2004).
[38] P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, New York, 1999), pp. 46-63.
[39] H.-Y. Chen and W. Lee, “Electro-optical characteristics of a twisted nematic liquid-crystal cell doped with carbon nanotubes in a DC electric field, ”Optical Review 12(3), 223-225 (2005).
[40] Y.-M. Chang, T.-Y. Tsai, Y.-P. Huang, W.-S. Chen and W. Lee, “Electrical and electro-optical properties of nematic-liquid-crystal–montmorillonite-Clay Nanocomposites,” Japanese Journal of Applied Physics 46(11), 7768-7370 (2007).
[41] 許烜綜,《以溫變介電頻譜技術量測藍相材料》,碩士論文,國立交通大學光電系統研究所,民國104年七月。
[42] W. Lee and J.-S. Gau, and H.-Y. Chen “Electro-optical properties of planar nematic cells impregnated with carbon nanosolids,” Applied Physics B 81(2), 171–175 (2005).
[43] A. Emoto, E. Uchida and T. Fukuda, “Optical and physical applications of photocontrollable materials: azobenzene-containing and liquid crystalline polymers,” Polymers Review 4(1), 150–186 (2012).
[44] E. Lueder, Liquid Crystal Displays: Addressing Schemes and ElectroOptical Effects (Wiley, New York, 2001).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊