跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 08:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曹智皓
研究生(外文):CAO, ZHI-HAO
論文名稱:旋轉型鍛用於高斷面差自行車異形管預成形製程之分析研究
論文名稱(外文):Analysis of Rotary Swaging Process for Preforming Process of High Expansion Ratio Bike Tube
指導教授:陳立緯
指導教授(外文):CHEN, LI-WEI
口試委員:吳佳璟許源泉陳立緯
口試委員(外文):WU, CHIA-CHINHSU, YUAN-CHUANCHEN, LI-WEI
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與電腦輔助工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:65
中文關鍵詞:異形管自行車鋁管材旋鍛加工
外文關鍵詞:shaped tubebicyclealuminum tuberotary swaging forging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
近幾年自行車的發展,不再只對方便舒適、省力就感到滿足,炫麗的外觀更是現代人的一大參考點,而要達到劇烈的車架外觀變化就需極限的高斷面差,傳統加工方式已無法應對,於是本文採用縮口成形中,最為優良的旋轉型鍛製程作為預成形,並藉由業界經驗所演化出的基本公式為基本參數,在公式上追加更嚴苛的條件以達到成形更極限的高斷面差,而為了降低成本先透過有限元素分析軟體進行模擬,探討成形性、厚度與外觀,再依模擬結果來找尋最佳化製程,並進行實作比對,來製出極限高斷面差之車架。研究中發現,探討成形極限時,胚料的影響非常巨大,故胚料在旋轉型鍛之前一律實施退火熱處理,再進行拉伸試驗獲取材料塑流應力,可使模擬與實際結果更為接近。尋找最佳化參數發現在摩擦因子0.05,進給速度是2.03 mm⁄s時,旋鍛值不論是0.28或0.31,成品厚度都比較薄。在表面粗糙度比較中,旋鍛值在0.28或0.31的狀況下,機械式自動進料因較平穩的關係,有較佳的表面粗糙度,且旋鍛值0.28時,表面粗糙度又比旋鍛值0.31更佳,代表旋鍛值0.28更為平穩。在厚度比較中,發現模擬分析結果的厚度比實作成品厚度還厚,是因為實作上會有切削產生,但模擬上不會有切削,於是多餘的料會往內表面流動。在硬度比對上,手持因進料速度和力道不穩定,導致最前端會與模具摩擦,造成硬度值越來越高的傾向,這點為與模擬結果最大不同處。在液壓成形模擬上,旋轉型鍛成品厚度只要小於4mm,內壓力能使胚料完全貼合於模具上,但超過4mm液壓成形會使胚料略為膨脹,而無法到達所要貼合的模具外形尺寸上,因此預成形厚度控制在液壓成形是非常重要的。
With the development of bicycles in recent years, people now are not only satisfied with how convenient and power-saving bicycles are, but also the fancy appearances of bikes. To achieve dramatic deforming of bike frames which are thought more beautiful than simple ones, the extreme high-profile difference which traditional processing method cannot cope with is required. Thus, we use rotary swaging forging which is the best forging method of shrink forming processes as pre-forming in this paper. Then, we use the basic formula evolved by industry experiences to find the basic parameters, and add more severe conditions to the formula to create the circumstances to form extreme high-section difference. In order to reduce costs, FEM is used to simulate the processing to discuss the formability, thickness and appearance of workpieces until finding out the optimization process. The final step is forming the workpiece practically and comparing the results of simulation and actual processing. In this research, it is found that the influence of the billet is very large when it comes to forming limitation. Therefore, to make the differences between the simulation and actual result smaller, the billet is subjected to annealing heat treatment and then the tensile test is performed to obtain the flow stress of the material before the rotary swaging forging in this research. In the part of optimizing parameters, it is found out that when the friction factor is 0.05 and the feed rate is 2.03 mm/s, the thickness of the finished product is relatively thin whether rotary swaging forging value is 0.28 or 0.31. In the comparison of surface roughness, when the rotary swaging forging value is 0.28 or 0.31, the mechanical automatic feeding makes the workpiece have a better surface roughness because it feeds more smoothly than human feeding. Moreover, the surface roughness of products is better when the rotary swaging forging value is 0.28 than it is 0.31, so the processing is more stable when the rotary swaging forging value is 0.28. In the comparison of thickness, it is found that the simulation is thicker than the actual finished product because the cutting occurred in the actual processing, but not in the simulation. Thus, the excess material would flow to the inner surface and make the simulation thicker than the actual workpiece. In the comparison of hardness, the hand-held feeding during the actual processing causes the front end of the material to rub against the die due to the unstable of feeding speed and the strength the feeding force. The friction results in a tendency for the hardness value to become higher and higher, which is the biggest difference between the simulation and the actual result. In the hydroforming simulation, when the thickness of the rotary forged product is less than 4mm, the internal pressure can make the billet completely fit on the die. However, if the thickness of the rotary forged product is over 4mm, hydroforming will cause the billet to expand slightly and the material cannot fit on the die. Therefore, it is very important for hydroforming to control the thickness of the pre-forming workpiece.
摘要......i
Abstract......ii
誌謝......iv
目錄......v
表目錄......vii
圖目錄......viii
符號說明......x
第一章 緒論......1
1.1 前言......1
1.2 研究動機與目的......2
1.3 研究方法與步驟......3
1.4 文獻回顧 ......5
1.4.1 製程退火 ......5
1.4.2 旋轉型鍛 ......6
1.4.3 液壓成形 ......7
1.5 論文總覽 ......8
第二章 理論基礎 ......9
2.1 鋁管製程概述......9
2.2 旋轉型鍛......11
2.2.1 旋轉型鍛基本理論......11
2.2.2 旋鍛機設計......12
2.3 縮口......14
2.3.1 縮口形式和毛胚長度計算......14
2.3.2 縮口次數......15
2.3.3 縮口後厚度......16
2.4 旋轉型鍛上的切片法分析......17
2.4.1 下沉區分析......18
2.4.2 鍛造區分析......19
2.4.3 定徑區分析......20
2.5 旋鍛成形經驗公式......22
2.6 液壓成形概論......23
第三章 研究方法......24
3.1 有限元素軟體介紹......24
3.2 旋轉型鍛模擬參數與規劃......25
3.3 液壓成形模擬參數與規劃......28
3.4 鋁管退火熱處理......29
3.5 拉伸試驗......30
3.6 旋鍛機實驗......32
3.7 表面粗糙度量測儀......34
3.8 線切割放電加工......35
3.9 厚度量測......35
3.10 維氏硬度計......36
第四章 結果與討論......37
4.1 管胚材料機械性質......37
4.2 驗證DEFORM 2D分析可靠性......37
4.3 尋找最佳參數......39
4.3.1 速度......39
4.3.2 摩擦因子......41
4.4 外觀比較......44
4.4.1 表面粗糙度......44
4.4.2 厚度......47
4.5 硬度......50
4.6 液壓成形可行性分析......52
第五章 結論與建議......53
5.1 結論......53
5.2 建議......54
參考文獻......55
Extended Abstract 58


[1] 陳炳聖,2007,萬物簡史:源樺出版社。
[2] 一點資訊. (2017/09/03). 700年自行車發展簡史. 2019年5月3日 取自 https://zi.media/@yidianzixun/post/ySTbK6
[3] 海遙. 中國自行車博物館遊踪(中):勞斯萊斯換不走的鎮館之寶. 2019年5月16日 取自 https://www.biketo.com/news/40989.html
[4] 大順益鋼鐵有限公司. 2019年5月23日 取自 http://www.dashunyi.com.tw/product08.html
[5] 台北國際自行車展覽會. 2019年年6月3日 取自 https://www.taipeicycle.com.tw/zh_TW/product/info.html?id=A10462961C06341676665E454901071B
[6] G.B.Burger, A. K. G., P.W.Jeffrey,D.J.Lloyd, 1995, “Microstructural control of aluminum sheet used in automotive applications”, Materials Characterization, 35(1), 23-39.
[7] Jingjing Li, S. K., Theresa M. Lee,Paul E. Krajewski,Hui Wang,S. Jack.Hu, 2011, “The effect of prestrain and subsequent annealing on the mechanical behavior of AA5182-O”, Materials Science and Engineering: A, 528(10-11), 3905-3914.
[8] Tszeng, T. C., Kobayashi, S., 1986, “Determination of residual stresses in radial forging”, Manufacturing Processes Simulation, 20, 31-45.
[9] Joseph P.Domblesky, R., Brett Painter, 1995, “Application of the finite-element method to the radial forging of large diameter tubes”, Materials Processing Technology, 49(1-2), 57-74.
[10] J.H.Liou, D. Y. J., 1997, “Forging parameter optimization considering stress distributions in products through FEM analysis and robust design methodology”, Machine Tools and Manufacture, 37(6), 775-782.
[11] D.YJang, J. H., 1998, “Study of stress development in axi-symmetric products processed by radial forging using a 3-D non-linear finite-element method”, Materials Processing Technology, 74(1-3), 74-82.
[12] A.Ghaei, M. R. M., A.Karimi Taheri, 2005, “Study of the effects of die geometry on deformation in the radial forging process”, Materials Processing Technology, 170(1-2), 156-163.
[13] A.K.Sahoo, M. K. T., A.R.Mileham, 2007, “Six Sigma based approach to optimize radial forging operation variables”, Materials Processing Technology, 202(1-3), 125-136.
[14] A.Ghaei, M. R. M., A.Karimi Taheri, 2008, “Finite element modelling simulation of radial forging of tubes without mandrel”, Materials & Design, 29(4), 867-872.
[15] S.J. Lim, H. J. C., C.H. Lee, 2009, “Forming characteristics of tubular product through the rotary swaging process”, Materials Processing Technology, 209(1), 283-288.
[16] Qi Zhang, K. J., Dong Mu, 2014, “Tube/tube joining technology by using rotary swaging forming method”, Materials Processing Technology, 214(10), 2085-2094.
[17] Qi Zhang, K. J., Dong mu,Pengju Ma,Jie Tian, 2014, “Rotary Swaging Forming Process of Tube Workpieces”, Procedia Engineering, 81, 2336-2341.
[18] 陽程, 路., 孫耀,莊曉偉,王玲,2018,“空心軸成形技術研究現狀”,鍛壓技術,43卷,1期,頁1-8。
[19] B Carleer, G. d. K., Lde Winter,Bvan Veldhuizen, 2000, “Analysis of the effect of material properties on the hydroforming process of tubes”, Materials Processing Technology, 104(1-2), 158-166.
[20] A.Shirayori, S. F., H.Ishigure,M.Narazaki, 2003, “Deformation behavior of tubes with thickness deviation in circumferential direction during hydraulic free bulging”, Materials Processing Technology, 139(1-3), 58-63.
[21] Gracious Ngaile, S. J., Taylan Altan, 2004, “Lubrication in tube hydroforming (THF): Part I. Lubrication mechanisms and development of model tests to evaluate lubricants and die coatings in the transition and expansion zones”, Materials Processing Technology, 146(1), 108-115.
[22] Yi-Chun Chen, C.-Y. C., Ming-Fu Lee, 2014, “Process Parameter with High Expansion Rate of SUS304 Tube Hydroforming”, Procedia Engineering, 81, 2230-2236.
[23] Manabu Wada, M. M., Keinosuke Iguchi,Hiromitsu Kaneda, 2014, “Large-expansion Hydroforming Technology Achieving Three-times Expanding”, Procedia Engineering, 81, 2217-2222.
[24] 姜禮德,2014,機械製造:龍騰文化,頁143-153。
[25] Bernd Kuhfuss, E. M., Volker Piwek, 2008, Micro rotary swaging: process limitations and attempts to their extension: Springer-Verlag.
[26] 陳映諭,2011,“金屬管件之微旋鍛成形”,創意工程與機密科技研究所,國立虎尾科技大學。
[27] 黃國鈞,2009,“棒材旋鍛成形有限元素分析”,創意工程與精密科技研究所,國立虎尾科技大學。
[28] Vollertsen, F., 2013, Micro Metal Forming, Berlin, Heidelberg: Springer.
[29] 牟林, 魏.,2005,冷沖壓工藝及模具設計教程,北京:清華大學出版社,頁223-236。
[30] M.Sanjari, A. K. T., A.Ghaei, 2007, “Prediction of neutral plane and effects of the process parameters in radial forging using an upper bound solution”, Materials Processing Technology, 186(1-3), 147-153.
[31] GD Lahoti, T. A., 1976, “Analysis of the radial forging process for manufacturing of rods and tubes”, J. Eng, 98(1), 265-271.
[32] DEFORM 說明書,6.1版。
[33] 尹冠人, 胡., 趙震,2009,“薄壁管旋轉鍛造3D數值模擬”,鍛壓技術,34卷,3期。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top