跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.57) 您好!臺灣時間:2025/10/02 02:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉哲宏
研究生(外文):Tse-Hung Yeh
論文名稱:結合設計結構矩陣法與決策實驗室法於新產品開發--模糊理論之應用
論文名稱(外文):A combination of Design Structural Matrix and Decision Making Trial and Evaluation Laboratory to new product development: A fuzzy set theory application
指導教授:張洝源張洝源引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:工業工程與管理研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:81
中文關鍵詞:模糊理論設計結構矩陣新產品開發決策實驗室法
外文關鍵詞:fuzzy theoryDesign Structure Matrix (DSM)new product developmentDecision Making Trial and Evaluation Laboratory (DEMATEL)
相關次數:
  • 被引用被引用:18
  • 點閱點閱:569
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
近年來,企業正面臨著日益競爭及全球化商業環境,唯有重視產品改善與創新,並快速回應市場需求,才能在全球性的競爭環境中生存與茁壯。台灣的產業型態以中小企業為主,產品開發能力較弱,且新產品開發時程太長。縮短產品開發時程、提高產品品質與降低成本,是保持競爭優勢的必備條件。新產品開發在設計與發展時期的整合顯得相當重要,設計者如果能充分了解各零件之間的相互關聯性,將有助於提升新產品研發之效能。
從產品開發管理的角度思考,產品內部組成零件增加到某種程度,管理者將面臨視覺上分辨之困難,傳統的PERT、CPM使用上會受到限制,需要更多功能的分析工具協助,設計結構矩陣 (Design Structure Matrix, DSM)的方法將各元素的彼此間關聯性以矩陣與圖形方式來呈現,可用以分析主零件與次零件之間獨立性、相依性、交互耦合性之關聯屬性。本研究再運用模糊理論,由產品設計者針對零件的關係利用模糊函數評估零件各項關係值,進而使用決策試驗與實驗評估法 (Decision Making Trial and Evaluation Laboratory, DEMATEL)評估零件關聯性強度,協助產品開發設計者能快速得知各模組的關鍵零件,以縮短產品開發時程,使企業保持競爭優勢。
In face of growing competitions and the global business environment, enterprises have been forced to pay attention to product improvement and innovation and quickly react to market demands, so as to survive and grow in the globally competitive environment. In Taiwan, local industries are based on small and medium-sized enterprises, which have weaker product development abilities and need longer time to develop new products. However, shortening of product development time, improvement of product quality, and cost reduction are essential for them to maintain competitive advantages. Integration of the design and development of new products has thus become very important. If designers can sufficiently understand the relationships between product components, they can enhance their new product development efficiency.
From the perspective of product development management, when the number of product components increases to a certain extent, it will become difficult for managers to visually distinguish these components. Their use of conventional PERT and CPM will also be confined. More functional assistance may be needed. Design Structure Matrix (DSM) is intended to present the relationships between components in matrix structures. This method can be used to analyze the independent, dependent, and interdependent between main components and sub components. According to the fuzzy theory, this study used triangular fuzzy numbers to evaluate the relations of components and further employed Decision Making Trial and Evaluation Laboratory (DEMATEL) to evaluate the intensity of the relations. Through this approach, designers could quickly identify the key components of each module to shorten product development time and help their enterprises maintain competitive advantages.
目錄

中文摘要 --------------------------------------------------------------------------- i
英文摘要 --------------------------------------------------------------------------- ii
誌謝 --------------------------------------------------------------------------- iv
表目錄 --------------------------------------------------------------------------- viii
圖目錄 --------------------------------------------------------------------------- ix
第一章 緒論--------------------------------------------------------------------- 1
1.1. 研究背景與動機------------------------------------------------------ 1
1.2. 研究目的--------------------------------------------------------------- 2
1.3. 研究方法--------------------------------------------------------------- 2
1.4. 研究流程--------------------------------------------------------------- 4
第二章 文獻探討--------------------------------------------------------------- 5
2.1. 新產品開發之定義--------------------------------------------------- 5
2.1.1. 新產品開發類型------------------------------------------------------ 8
2.2. 設計結構矩陣的介紹------------------------------------------------ 10
2.2.1. 設計結構矩陣基本關聯性形式------------------------------------ 12
2.2.2. 設計結構矩陣之分割法則------------------------------------------ 16
2.2.3. 設計結構矩陣分群--------------------------------------------------- 18
2.3. 模組化概念------------------------------------------------------------ 19
2.4. 模糊理論--------------------------------------------------------------- 21
2.5 決策試驗與實驗評估法--------------------------------------------- 22
第三章 研究方法--------------------------------------------------------------- 24
3.1. 原始二元設計結構矩陣--------------------------------------------- 24
3.1.1. 建構設計結構矩陣--------------------------------------------------- 25
3.1.2. 設計結構矩陣之重新分割------------------------------------------ 26
3.1.3. 數值設計結構矩陣--------------------------------------------------- 26
3.2. 模糊理論應用--------------------------------------------------------- 27
3.2.1. 隸屬函數--------------------------------------------------------------- 27
3.2.2. 凸模糊集合------------------------------------------------------------ 27
3.2.3. 正規模糊集合--------------------------------------------------------- 28
3.2.4. 模糊數------------------------------------------------------------------ 28
3.2.5. 三角模糊數------------------------------------------------------------ 29
3.2.6. 模糊運算--------------------------------------------------------------- 29
3.2.7. 重心法解模糊化------------------------------------------------------ 30
3.2.8. 轉換相關語意變數成三角模糊數--------------------------------- 30
3.2.9. 漆彈槍之零件複雜性權重與零件關係之評估------------------ 31
3.3.10. 解模糊化--------------------------------------------------------------- 32
3.3. DEMATEL之運算---------------------------------------------------- 32
第四章 實例驗證--------------------------------------------------------------- 34
4.1. 實例驗證之實施步驟------------------------------------------------ 34
4.2. 建構漆彈槍之DSM-------------------------------------------------- 37
4.3. 漆彈槍之DSM模糊化----------------------------------------------- 41
4.4. 漆彈槍之DSM模糊運算-------------------------------------------- 46
4.5. 漆彈槍之DSM分割法---------------------------------------------- 55
4.6. 漆彈槍各零件DEMATEL分析------------------------------------ 57
第五章 結論與建議------------------------------------------------------------ 63
5.1. 結論--------------------------------------------------------------------- 63
5.2. 建議與後續研究------------------------------------------------------ 63
5.3. 研究限制--------------------------------------------------------------- 64
參考文獻 --------------------------------------------------------------------------- 65
附錄一 --------------------------------------------------------------------------- 70








表目錄

表1 新產品開發程序-------------------------------------------------------------- 9
表2 設計結構矩陣的四種資料型態-------------------------------------------- 11
表3 三種作業關聯性分類表示-------------------------------------------------- 13
表4 模組化與傳統之比較表----------------------------------------------------- 21
表5 二元DSM---------------------------------------------------------------------- 24
表6 三個數值等級之定義-------------------------------------------------------- 27
表7 評估零件相關性之語意變數與其模糊數對照表----------------------- 30
表8 評估零件複雜性權重之語意變數與轉換三角模糊數之對照表----- 31
表9 漆彈槍零件名稱與平面圖形編號對照----------------------------------- 39
表10 漆彈槍各零件之複雜性模糊權重值-------------------------------------- 48
表11 漆彈槍之總影響矩陣-------------------------------------------------------- 58
表12 漆彈槍69個零件行列之D+R/D-R值----------------------------------- 60














圖目錄

圖1 研究方法流程----------------------------------------------------------------- 3
圖2 研究流程----------------------------------------------------------------------- 4
圖3 企業價值鏈-------------------------------------------------------------------- 5
圖4 新產品類型-------------------------------------------------------------------- 7
圖5 概念關聯流程圖-------------------------------------------------------------- 14
圖6 DSM資訊關係圖------------------------------------------------------------- 15
圖7 初始設計結構矩陣----------------------------------------------------------- 16
圖8 分割後之設計結構矩陣----------------------------------------------------- 17
圖9 凸模糊集合-------------------------------------------------------------------- 28
圖10 模糊數-------------------------------------------------------------------------- 28
圖11 三角模糊數-------------------------------------------------------------------- 29
圖12 實例驗證流程----------------------------------------------------------------- 36
圖13 漆彈槍平面圖----------------------------------------------------------------- 38
圖14 漆彈槍空間之初始DSM --------------------------------------------------- 42
圖15 漆彈槍能量之初始DSM---------------------------------------------------- 43
圖16 漆彈槍擊發之初始DSM --------------------------------------------------- 44
圖17 漆彈槍進球之初始DSM --------------------------------------------------- 45
圖18 NDSM解模糊化之空間關係矩陣----------------------------------------- 50
圖19 NDSM解模糊化之能量關係矩陣----------------------------------------- 51
圖20 NDSM解模糊化之擊發關係矩陣----------------------------------------- 52
圖21 NDSM解模糊化之進球關係矩陣----------------------------------------- 53
圖22 漆彈槍之NDSM四項特性關係矩陣------------------------------------- 54
圖23 漆彈槍之NDSM四項特性分割完成------------------------------------- 56
圖24 DEMATEL之關聯影響圖-------------------------------------------------- 62
一、中文文獻
1.小島敏彥(2002),新產品開發管理-企業革新的生存之道,蔣永明譯,中衛
2.王魁生(1994),新產品開發品質管理,量測資訊第40期。
3.司徒達賢(1995),策略管哩,遠流出版社,台北。
4.江祥證(2003),模糊邏輯失效模式與效應分析於企業決策之應用─以新產品開發投資為例,中華大學科技管理研究所,碩士論文。
5.吳周強(2004),運用模糊理論建立新產品開發績效評估模式之研究─以工業產業為例,世新大學資訊管理學系,碩士論文
6.吳建南(2007),TRIZ與模組化之設計結構矩陣在產品開發之研究,東海大學工業設計系,碩士論文。
7.吳銘智(2007),模糊理論應用於供應鏈彈性衡量之研究,國立虎尾科技大學工業工程與管理所,碩士論文。
8.林宗明(2005),管理問題因果複雜度分析模式建立之研究-以DEMATEL為方法論,中原大學企業管理系,碩士論文。
9.胡雪琴(2003),企業問題複雜度之探討及量化研究 --以DEMATEL為分析工具—,中原大學企業管理研究所,碩士論文 
10.徐仁雄(2006),模組化設計之組裝介面幾何研究,東海大學工業設計研究所,碩士論文。
11.翁義哲(2007),應用模糊語意於多目標數控車削之最佳化研究,大同大學機械工程研究所,碩士論文。
12.郭奉宜(2005),統包工程之進度規劃模式,國立交通大學土木工程學系,碩士論文。
13.陳世和(2006),以模組化設計與市場區隔發展產品族之研究-以自行車產業為例,國立成功大學工業設計學系碩士班,碩士論文。
14.陳正斌(2003),應用模糊理論於颱風降雨量之推估,國立成功大學水利及海洋工程學系專班,碩士論文
15.陳俊伊(2002),同步工程應用於新產品開發專案工作協調之研究,國立台北科技大學生產系統工程與管理研究所,碩士論文。
16.陳英良(2005),模糊理論於雨量站網之研究,國立屏東科技大學水土保持系,碩士論文。
17.游建邦(2006),新產品開發不確定性之研究與評估模式之建立,國立虎尾科技大學工業工程與管理研究所,碩士論文。

二、英文文獻
1.Booz, P. S., Allen, T. J., Hamilton, G. (1982). New Product Management for the 1980''s. NY: Booz, Allen and Hamilton Inc.
2.Browning, T.R. (1998). “Use of Dependency Structure Matrices for Product Development Cycle Time Reduction”, Proceedings of the Fifth ISPE International Conference on Concurrent Engineering: Research and Applications, Tokyo, Japan, pp.89-96.
3.Browning, T. R. (2001). “Applying the Design Sructure Matrix to system Decomposition and Integration Problems”, IEEE Transaction On Engineering Management, Vol. 48, pp. 292-306.
4.Cooper, R.G. (1990). “Stage-Gate Systems: A New Tool for Managing New Products”, Business Horizons , pp. 44-54
5.Chen, C.H., Ling, S.F., Chen, W. (2003). “Project Scheduling for Collaborative Product Development Using DSM”, International Journal of Project Management, Vol.21, Iss.4, pp.291-299.
6.Chen, L.S. (2000). “Modeling Concurrent Engineering Product Design: A Multifunctional Team Approach”, Concurrent Engineering: Research and Application, Vol.8, No.3, pp.183-198.
7.Chen, S, J., Lin, L. (2002). “A Project Task Coordination Model for Team Organization in Concurrent Engineering”, Concurrent Engineering: Research and Application, Vol. 10, No.3, pp.187-203.
8.Chen, S. M., Hwang, C. L. (1992). Fuzzy Multiple Attribute Decision Making Method and Application - A state-of-the-art Survey, Springer-Verlag, N.Y.
9.Chou T.Y., Chou, S. T., Tzeng, G.H. (2006). “Evaluating IT/IS investments: A Fuzzy Multi-criteria Decision Model Approach”, European Journal of Operational Research, Vol. 173, pp.1026-1046.
10.Chopra, S., Meindl, P. (2002). Supply Chain Management:Strategy Planning and Operation, Prentice Hall, Inc.
11.Cooper, R.G. (1983). “A Process Model for Industrial New Product Development”, IEEE Transactions on Engineering Management, Vol.30, No.1, pp.2-11.
12.Cooper, R.G. (1994). “Perspective: Third-Generation New Product Processes”, Journal of Product Innovation Management, Vol.11, pp.3-14.
13.Crawford, C.M. (1992), “The Hidden Costs of Accelerated Product Development”, Journal of Product Innovation Management, Vol. 9, No.3, pp.188-99.
14.Dwyer, F.R., Welsh, M.A. (1985). “Environmental Relationships of the Internal Political Economy of Marketing Channels”, Journal of Marketing Research, Vol.22, Iss.4, pp.39-416.
15.Eppinger, S. D., Whitney, D. E., Smith, R. P. (1990). “Organizing the Tasks in Complex Design Projects”, ASME Conference on Design Theory and Methodology, Chicago, IL, September, pp.39-46.
16.Fontela, E., Gabus, A. (1976). The DEMATEL Observer, DEMATEL 1976 report. Switzerland Geneva: Battlle Geneva Research Center.
17.Guivarch, A. D. (2003). Concurrent Process Mapping, Organizations, Project and Knowledge Management in Large-Scale Product Development Projects: Using the Design Structure Matrix Method, Massachusetts Institute of Technology Thesis.
18.Hsiao, S.W., Liu, E. (2005). “A Structural Component-based Approach for Designing Product Family”, Computers in Industry, Vol.56, pp.13-28.
19.Huang, C.C., Kusiak, A. (1998). “Modularity in Design of Products and Systems”, IEEE Transactions on Systems and Cybernetics, Vol. 28, No.1, pp.66-77.
20.Hori, S., Shimizu, Y. (1999). “Designing Methods of Human Interface for Supervisory Control Systems”, Control Engineering Practice, Vol.7, No.11, pp.1413-1419.
21.Klir, G. J., Yuan, B. (1995). Fuzzy Set and Fuzzy Logic Theory and Applications, Prentice-Hall International Inc.
22.Kuczmarski, T.D. (1992). Managing New Products: The Power of Innovation, 2nd, pp. 34-35.
23.Kamaike, M. (2001). “Design Elements in the Passenger Car Development: The classification and the influence analysis in case of recreational vehicle”, Japanese Society for the Science of Design, Vol.48, No.1, pp.29-38.
24.Kaufmann A. and M. M. Gupta (1991). Introduction to fuzzy arithmetic: Theory and applications, Van Nostrand Reinhold, London.
25.Karwowski, W. and Mital, A. (1986). “Applications of Approximate Reasoning in Risk Analysis”, In: Karwowski, W., Mital, A. (Eds.), Applications of Fuzzy Set Theory in Human Factors, Netherlands, Amsterdam.
26.Lin C.T., Chiu, H., Chu, P.Y. (2006). “Agility Index in the Supply Chain”, International Journal of Economics, Vol.100, pp.285-299.
27.Lee, Y. C., Gilleard, J. D. (2002). “Collaborative Design: A Process Model for Refurbishment”, Automation in Construction, Vol.11, pp.535-544.
28.Roger, J.L. (1997). “Reducing Design Cycle Time and Cost through Process Resequencing”, Proceedings of the International conference on Engineering Design, Tampere, Finland, August 19-21, p.6.
29.Rolstada, A. (1995). “Planning and Control of Concurrent Engineering Projects”, The International Journal of Production Economics, Vol.38, pp.3-13.
30.Steward, D.V. (1965). “Partitioning and Tearing Systems of Equations”, SIAM Journal of Numerical Analysis, Vol.2, No.2, pp.345-365.
31.Steward, D.V. (1981). “The Design Structure System: A Method for Managing the Design of Complex System”, IEEE Transactions on Engineering Management, Vol.78, No.3, pp.71-74.
32.Sabbaghian, N., Eppinger, S., Murman, E. (1998). “Product Development Process Capture and Display Using Web-based Technologies”, Proceedings of the IEEE International Conference on Systems, Man, Cyber, San Diego, CA, pp.2664-2669.
33.Trott, P. (1998). Innovation Management & New Product Development, London: Pitman Publishing, pp.119-120, pp.111-138
34.Tseng, M.M., Jiao, J. (1996). “Design for Mass Customization”, Annals of the CIRP, Vol.45, No.1, pp.153-156.
35.Ulrich, K. T., Eppinger, S. D. (2002). Product Design and Development, McGraw-Hill, Inc.
36.Wu, W.W., Lee, Y.T. (2007). “Developing Global Managers'' Competencies using the Fuzzy DEMATEL Method”, Expert Systems with Applications, Vol.32, No.2, pp.499-507.
37.Yassine, A.A. (2004). “An Introduction to Modeling and Analyzing Complex Product Development Processes Using the Design Structure Matrix (DSM) Method”, Quaderni di Management (Italian Management Review), www.quaderni-di-management.it, No.9.
38.Yassine, A.A., Braha, D. (2003). “Complex Concurrent Engineering and the Design Structure Matrix Method”, Concurrent Engineering, Vol.11, pp.165-176.
39.Yassine, A.A., Falkenburg, D., Chelst, K. (1999). “Engineering Design Management: An Information Structure Approach”, International Journal of Production Research, Vol.37, No.13, pp.2957-2975.
40.Yassine, A.A., Whitney, D.E., Zambito, T. (2001). “Assessment of Rework Probabilities for Simulating Product Development Processes Using the Design Structure Matrix (DSM)”, International Design Engineering Technical & Computers and information in Engineering Conference, ASME, pp.1-9.
41.Zadeh, L.A. (1965). “Fuzzy Sets”, Information and Control, Vol.8, pp.338-353.
42.Zimmermann, H.J. (1991). Fuzzy Set Theory and its Applications. Boston: Kluwer Academic.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top