|
[1] E. D. Tsochatzis, U. Menkissoglu-Spiroudi, D. G. Karpouzas, R. Tzimou-Tsitouridou. A multi-residue method for pesticide residue analysis in rice grains using matrix solid-phase dispersion extraction and high-performance liquid chromatography–diode array detection. Analytical and Bioanalytical Chemistry, 2010, 397(6), 2181-2190. [2] I. Lavagnini, A. Urbani, F. Magno. Overall calibration procedure via a statistically based matrix-comprehensive approach in the stir bar sorptive extraction–thermal desorption–gas chromatography–mass spectrometry analysis of pesticide residues in fruit-based soft drinks. Talanta. 2011, 83, 1754-1762. [3] G. Aragay, F. Pino, A. Merkoçi, Nanomaterials for Sensing and Destroying Pesticides. Chemical Reviews, 2012, 112(10), 5317-5338. [4] N. A. Bakar, A. A. Umar, M. M. Salleh, M. Yahaya, B. Y. Majlis , Localized Surface Plasmon Resonance sensor of Gold Nanoparticles for detection pesticides in water. 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE), 2012, 344-347. [5] K. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello, Gold Nanoparticles in Chemical and Biological Sensing. Chemical Reviews. 2012, 112(5), 2739-2779. [6] K. A. Willets, R. P. V. Duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 2007, 58(1), 267-297. [7] S. Fateixa, H. I. S.Nogueira, T. Trindade, Hybrid nanostructures for SERS: materials development and chemical detection. Physical Chemistry Chemical Physics. 2015, 17(33), 21046-21071. [8] A. X. Wang, X. Kong, Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering. Materials. 2015, 8(6), 3024-3052. [9] X. Liu, C. Zong, K. Ai, W. He, L. Lu. Engineering Natural Materials as Surface-Enhanced Raman Spectroscopy Substrates for In situ Molecular Sensing. ACS Applied Materials & Interfaces. 2012, 4(12), 6599-6608. [10] X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, Z. Liu. Can Graphene be used as a Substrate for Raman Enhancement? Nano Letters. 2010, 10(2), 553-561. [11] X. Ling, S. Huang, S. Deng, N. Mao, J. Kong, M. S. Dresselhaus, J. Zhang. Lighting Up the Raman Signal of Molecules in the Vicinity of Graphene Related Materials. Acc. Chem. Res. 2015, 48, 1862−1870. [12] S. Link, M. A. El-Sayed. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. The Journal of Physical Chemistry B. 1999, 103(40), 8410-8426. [13] M. A. El-Sayed. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Accounts of Chemical Research. 2001, 34(4), 257-264. [14] S. Link, M. A. El-Sayed. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry. 2000, 19(3), 409-453. [15] B. J. Wiley, S. H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen, Y. Xia. Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis. The Journal of Physical Chemistry B. 2006, 110(32), 15666-15675. [16] Y. Sun, Y. Xia. Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst, 2003, 128, 686–691. [17] E. Hao, G. C. Schatz, J. T. Hupp. Synthesis and Optical Properties of Anisotropic Metal Nanoparticles. Journal of Fluorescence. 2004, 14(4), 331-341. [18] P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. The Journal of Physical Chemistry B. 2006, 110(14), 7238-7248. [19] J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, Z. Q. Tian. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature. 2010, 464, 392. [20] S. Keskin, M. Culha. Label-free detection of proteins from dried-suspended droplets using surface enhanced Raman scattering. Analyst. 2012, 137(11), 2651-2657. [21] Z. Dai, X. Xiao, L. Liao, J. Zheng, F. Mei, W. Wu, J. Ying, F. Ren, C. Jiang. Large-area, well-ordered, uniform-sized bowtie nanoantenna arrays for surface enhanced Raman scattering substrate with ultra-sensitive detection. Applied Physics Letters. 2013, 103(4), 041903. [22] Y. Zhang, Z. Wang, L. Wu, Y. Pei, P. Chen, Y. Cui. Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique. Analyst. 2014, 139(20), 5148-5154. [23] L. Pei, Y. Huang, C. Li, Y. Zhang, B.A. Rasco, K. Lai. Detection of Triphenylmethane Drugs in Fish Muscle by Surface-Enhanced Raman Spectroscopy Coupled with Au-Ag Core-Shell Nanoparticles. Journal of Nanomaterials. 2014, 2014, 1-8. [24] S.-Y. Chou, C.-C. Yu, Y.-T. Yen, K.-T. Lin, H.-L. Chen, W.-F. Su. Romantic Story or Raman Scattering? Rose Petals as Ecofriendly, Low-Cost Substrates for Ultrasensitive Surface-Enhanced Raman Scattering. Analytical Chemistry. 2015, 87(12), 6017-6024. [25] B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Yi Ling, Q. Xiong. Vertically Aligned Gold Nanorod Monolayer on Arbitrary Substrates: Self-Assembly and Femtomolar Detection of Food Contaminants. ACS Nano. 2013, 7(7), 5993-6000. [26] J. Chen, Y. Huang, P. Kannan, L. Zhang, Z. Lin, J. Zhang, T. Chen, L. Guo. Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables. Analytical Chemistry. 2016, 88(4), 2149-2155. [27] T. Yang, Z. Zhang, B. Zhao, R. Hou, A. Kinchla, J. M. Clark, L. He. Real-Time and in Situ Monitoring of Pesticide Penetration in Edible Leaves by Surface-Enhanced Raman Scattering Mapping. Analytical Chemistry. 2016, 88(10), 5243-5250. [28] L. Zhang, C. Jiang, Z. Zhang. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring. Nanoscale. 2013, 5(9), 3773-3779. [29] F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, E. Di Fabrizio. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nature Photonics. 2011, 5, 682. [30] F. Gentile, M. L. Coluccio, N. Coppedè, F. Mecarini, G. Das, C. Liberale, L. Tirinato, M. Leoncini, G. Perozziello, P. Candeloro, F. De Angelis, E. Di Fabrizio. E. Superhydrophobic Surfaces as Smart Platforms for the Analysis of Diluted Biological Solutions. ACS Applied Materials & Interfaces. 2012, 4(6), 3213-3224. [31] H. Wang, C. S. Levin, N. J. Halas. Nanosphere Arrays with Controlled Sub-10-nm Gaps as Surface-Enhanced Raman Spectroscopy Substrates. Journal of the American Chemical Society. 2005, 127(43), 14992-14993. [32] B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg. Metal Nanoparticle Gratings: Influence of Dipolar Particle Interaction on the Plasmon Resonance. Physical Review Letters. 2000, 84(20), 4721-4724. [33] V. A. Markel, A. K. Sarychev. Propagation of surface plasmons in ordered and disordered chains of metal nanospheres. Physical Review B. 2007, 75(8), 085426. [34] L. Brus. Noble Metal Nanocrystals: Plasmon Electron Transfer Photochemistry and Single-Molecule Raman Spectroscopy. Accounts of Chemical Research. 2008, 41(12), 1742-1749. [35] S. Zou, G. C. Schatz. Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chemical Physics Letters. 2005, 403(1), 62-67. [36] S. Zou, N. Janel, G. C. Schatz. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. The Journal of Chemical Physics. 2004, 120(23), 10871-10875. [37] V. A. Markel. Comment on “Silver nanoparticle array structures that produce remarkably narrow plasmon line shapes”. The Journal of Chemical Physics. 2005, 122(9), 097101. [38] J. Y. Cheng, D. P. Sanders, H. D. Truong, S. Harrer, A. Friz, S. Holmes, M. Colburn, Hinsberg W. D. Simple and Versatile Methods To Integrate Directed Self-Assembly with Optical Lithography Using a Polarity-Switched Photoresist. ACS Nano. 2010, 4(8), 4815-4823. [39] Y. S. Jung, W. Jung, H. L. Tuller, C. A. Ross. Nanowire Conductive Polymer Gas Sensor Patterned Using Self-Assembled Block Copolymer Lithography. Nano Letters. 2008, 8(11), 3776-3780. [40] Q. Guo, M. Xu, Y. Yuan, R. Gu, J. Yao. Self-Assembled Large-Scale Monolayer of Au Nanoparticles at the Air/Water Interface Used as a SERS Substrate. Langmuir. 2016, 32(18), 4530-4537. [41] F. Caruso, M. Spasova, V. Salgueiriño-Maceira, L. M. Liz-Marzán. Multilayer Assemblies of Silica-Encapsulated Gold Nanoparticles on Decomposable Colloid Templates. Advanced Materials. 2001, 13(14), 1090-1094. [42] Y. Ma, L. Qi. Solution-phase synthesis of inorganic hollow structures by templating strategies. Journal of Colloid and Interface Science. 2009, 335(1), 1-10. [43] Y. Wan, S.-H. Yu. Polyelectrolyte Controlled Large-Scale Synthesis of Hollow Silica Spheres with Tunable Sizes and Wall Thicknesses. The Journal of Physical Chemistry C. 2008, 112(10), 3641-3647. [44] Y. Sun, B. Mayers, Y. Xia. Metal Nanostructures with Hollow Interiors. Advanced Materials. 2003, 15(7-8), 641-646. [45] C. Wu, T. Liu, B. Chu, D. K. Schneider, V. Graziano. Characterization of the PEO−PPO−PEO Triblock Copolymer and Its Application as a Separation Medium in Capillary Electrophoresis. Macromolecules. 1997, 30(16), 4574-4583. [46] K. Nakashima, P. Bahadur. Aggregation of water-soluble block copolymers in aqueous solutions: Recent trends. Advances in Colloid and Interface Science. 2006, 123-126 (Supplement C), 75-96. [47] S. P. Naik, S. Yamakita, M. Ogura, T. Okubo. Studies on mesoporous silica films synthesized using F127, a triblock co-polymer. Microporous and Mesoporous Materials. 2004, 75(1), 51-59. [48] B. C. Clover. Ph. D. dissertation, Micelle and Aggregate Formation in Amphiphilic Block Copolymer Solutions. The University of Maryland, College Park, MD, 2010. [49] T. Sakai, P. Alexandridis. Mechanism of Gold Metal Ion Reduction, Nanoparticle Growth and Size Control in Aqueous Amphiphilic Block Copolymer Solutions at Ambient Conditions. The Journal of Physical Chemistry B. 2005, 109(16), 7766-7777. [50] B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu, Y. Xia. Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science. 2009, 324(5932), 1302-1305. [51] L. Wang, Y. Yamauchi. Block Copolymer Mediated Synthesis of Dendritic Platinum Nanoparticles. Journal of the American Chemical Society. 2009, 131(26), 9152-9153. [52] L. Wang, Y. Yamauchi. Autoprogrammed Synthesis of Triple-Layered Au@Pd@Pt Core−Shell Nanoparticles Consisting of a Au@Pd Bimetallic Core and Nanoporous Pt Shell. Journal of the American Chemical Society. 2010, 132(39), 13636-13638. [53] L. Wang, Y. Yamauchi. Strategic Synthesis of Trimetallic Au@Pd@Pt Core−Shell Nanoparticles from Poly(vinylpyrrolidone)-Based Aqueous Solution toward Highly Active Electrocatalysts. Chemistry of Materials. 2011, 23(9), 2457-2465. [54] L. Wang, Y. Yamauchi. Metallic Nanocages: Synthesis of Bimetallic Pt–Pd Hollow Nanoparticles with Dendritic Shells by Selective Chemical Etching. Journal of the American Chemical Society. 2013, 135(45), 16762-16765. [55] O. Pena-Rodriguez, U. Pal. Au@Ag core-shell nanoparticles: efficient all-plasmonic Fano-resonance generators. Nanoscale. 2011, 3(9), 3609-3612. [56] J. Li, S. K. Cushing, J. Bright, F. Meng, T. R. Senty, P. Zheng, A. D. Bristow, N. Wu. Ag@Cu2O Core-Shell Nanoparticles as Visible-Light Plasmonic Photocatalysts. ACS Catalysis. 2013, 3(1), 47-51. [57] B. Liu, G. Han, Z. Zhang, R. Liu, C. Jiang, S. Wang, M.-Y. Han. Shell Thickness-Dependent Raman Enhancement for Rapid Identification and Detection of Pesticide Residues at Fruit Peels. Analytical Chemistry. 2012, 84(1), 255-261. [58] G. Wanka, H. Hoffmann, W. Ulbricht. Phase Diagrams and Aggregation Behavior of Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) Triblock Copolymers in Aqueous Solutions. Macromolecules. 1994, 27(15), 4145-4159. [59] F. C. Chang, Y. Li, R. J. Wu, C. H. Chen. Floating 3-dimensional nano-array as SERS sensors. Unpublished results. [60] L. Huang, Y. Han, S. Dong. Highly-branched mesoporous Au-Pd-Pt trimetallic nanoflowers blooming on reduced graphene oxide as an oxygen reduction electrocatalyst. Chemical Communications. 2016, 52(56), 8659-8662. [61] H. Ataee-Esfahani, M. Imura, Y. Yamauchi. All-Metal Mesoporous Nanocolloids: Solution-Phase Synthesis of Core–Shell Pd@Pt Nanoparticles with a Designed Concave Surface. Angewandte Chemie International Edition. 2013, 52(51), 13611-13615. [62] H. Ataee-Esfahani, L. Wang, Y. Nemoto, Y. Yamauchi. Synthesis of Bimetallic Au@Pt Nanoparticles with Au Core and Nanostructured Pt Shell toward Highly Active Electrocatalysts. Chemistry of Materials. 2010, 22(23), 6310-6318. [63] A. Shiohara, J. Langer, L. Polavarapu, L. M. Liz-Marzan. Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing. Nanoscale. 2014, 6(16), 9817-9823. [64] S. Sánchez-Cortés, C. Domingo, J. V. García-Ramos, J. A. Aznárez. Surface-Enhanced Vibrational Study (SEIR and SERS) of Dithiocarbamate Pesticides on Gold Films. Langmuir. 2001, 17(4), 1157-1162.
|