跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2025/09/01 12:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃靜雯
研究生(外文):Huang, Jing-Wen
論文名稱:金奈米粒子修飾多孔鉑鈀三維懸浮陣列結構及其表面增強拉曼散射感測應用
論文名稱(外文):Au nanoparticles decorated porous Pt-Pd three dimensional floating arrays nanostructures as high performance SERS chemical sensors
指導教授:陳軍華陳軍華引用關係
指導教授(外文):Chen, Chun-Hua
口試委員:李勝偉黃華宗張文固陳軍華
口試委員(外文):Lee, Sheng-WeiWhang, Wha-TzongChang, Wen-KuChen, Chun-Hua
口試日期:2018-01-29
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:58
中文關鍵詞:塊式高分子三維懸浮陣列表面增強拉曼散射感測器農藥
外文關鍵詞:copolymerthree dimensional floating arraySERSsensorpesticide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要利用三崁段團聯塊式高分子F127所建構之軟模板,合成一系列新穎Au、Pt、Pd三元金屬奈米粒子自組裝之三維懸浮陣列(Three-dimensional floating arrays; 3DFAs ),並利用其表面增強拉曼散射(Surface enhanced Raman scattering; SERS)效應作為微量農藥感測之用。在Pt-Pd二元金屬奈米粒子3DFAs之技術基礎上,本研究進一步導入Au奈米粒子,成功合成創新之Au奈米粒子修飾Pt-Pd 3DFAs三元奈米結構。藉由調控Au前驅物與F127之含量,可得到包括球型組裝與類花瓣組裝結構在內之二種代表性形態三元3DFAs奈米結構。以Au奈米粒子作為Pt-Pd 3DFAs表層修飾,除可保有原本獨特之3DFAs結構特徵,有效增強粒子耦合效應,提高SERS熱點密度。此外,Au奈米粒子修飾Pt-Pd 3DFAs具有極為均一之組裝尺寸,有利於提供穩定之SERS訊號,其可在液態及固態下維持三維組裝結構。而塊式高分子本身具有溶液可穿透性,能有效吸附檢測對象分子,進而提升SERS感測器之性能。研究結果顯示,類花瓣狀組裝結構於孔雀石綠草酸鹽之檢測極限濃度可低於50 ppb,且對於農藥腐絕亦呈顯著之表面增強效應。最後,成功於蔬果皮上檢測出腐絕,展現其極具即時快篩之應用潛力。此新穎貴金屬奈米粒子組裝之高感度三維懸浮陣列SERS感測器,克服了傳統「孤立金屬奈米粒子膠體溶液」之低熱點密度,以及「固態二維奈米粒子陣列基板」之繁複製程,可有效改善現有分子偵測的極限值,亦可應用於生物化學、化學分析、食物安全及環境監控上。
In this work, a series of novel ternary metallic nanoparticles (Au, Pt, and Pd) self-assembled three-dimensional floating arrays (3DFAs) have been successfully synthesized via a facial solution approach with tri-block copolymer F127 as soft templates, and applied as surface enhanced Raman scattering (SERS) chemical sensors for detecting trace amount of pesticides. On the basis of our previously developed techniques used for synthesizing Pt-Pd binary nanoparticles 3DFAs, in this work, we further introduced the 3rd metallic element, Au nanoparticles, and have successfully synthesized innovative Au nanoparticles decorated Pt-Pd 3DFAs. By adjusting the amounts of the Au precursors and F127, two unique presentative styles of ternary 3DFA nanoarchitectures including the spherical and petal-like 3DFA were obtained. The decoration of the Au nanoparticles on the surface layers of Pt-Pd 3DFAs would effectively enhance the SERS hot spots via increasing coupling modes for generating enormous local electromagnetic fields without crushing the special 3D architectures. Besides, the synthesized Au decorated Pt-Pd 3DFA exhibits an extremely uniform dimension and morphology for having steady SRES signals, and can be maintained in dry or wet states. In addition, the liquid penetrable copolymer networks in 3DFAs could effectively enhance the ability of absorbing target molecules and thus the SERS performance. It was found that the petal-like 3DFAs exhibit a lower limitation approaching 50 ppb in detecting malachite green oxalate (MGO) and show promising potential in sensing pesticides such as thiabendazole. The inspiring result of the detection of thiabendazole directly on apple skins has demonstrated great potential for fast real-time screening pesticides. The highly sensitive SERS sensors consisted of novel ternary Au decorated Pt-Pd 3DFAs obviously could not only overcome disadvantages of the very-low hot-spot density of the suspended colloidal metallic nanoparticles and complicated procedures for fabricating conventional 2-dimensional ordered nanoparticles arrays, but significantly improve the molecular detection limitation in the fields of biochemistry, chemical analysis, food safety and environmental monitoring.
摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 前言 1
第二章 文獻回顧 2
2.1貴金屬奈米粒子之表面增強拉曼散射現象 2
2.2 SERS感測應用 6
2.2.1貴金屬膠體溶液直接檢測對象分子 6
2.2.2貴金屬固態基板(無序)檢測對象分子 9
2.2.3規則排列之基板檢測對象分子 11
2.3塊式高分子與貴金屬奈米粒子之合成 13
2.3.1塊式高分子結構與特性 14
2.3.2塊式高分子合成貴金屬奈米粒子 16
2.4研究動機 22
第三章 研究方法與步驟 24
3.1實驗藥品 24
3.2實驗設備 25
3.3塊式高分子F127合成有序之三維懸浮陣列(3DFAs)結構 26
3.4奈米結構分析與SERS檢測 28
3.5拉曼試片之製作及性質量測 29
第四章 結果與討論 30
4.1 Pluronic F127塊式高分子合成三維懸浮陣列結構 30
4.1.1 Pluronic F127合成Au-Pt-Pd三元金屬3DFAs結構 31
4.1.2 Au前驅物的修飾量對3DFAs結構之影響 34
4.1.3 Pluronic F127濃度對3DFAs結構之影響 36
4.2三維懸浮陣列結構之生長機制 40
4.3表面增強拉曼散射感測應用 44
4.3.1孔雀石綠草酸鹽之SERS感測 45
4.3.2農藥腐絕之SERS感測 49
第五章 結論 51
參考文獻 52
[1] E. D. Tsochatzis, U. Menkissoglu-Spiroudi, D. G. Karpouzas, R. Tzimou-Tsitouridou. A multi-residue method for pesticide residue analysis in rice grains using matrix solid-phase dispersion extraction and high-performance liquid chromatography–diode array detection. Analytical and Bioanalytical Chemistry, 2010, 397(6), 2181-2190.
[2] I. Lavagnini, A. Urbani, F. Magno. Overall calibration procedure via a statistically based matrix-comprehensive approach in the stir bar sorptive extraction–thermal desorption–gas chromatography–mass spectrometry analysis of pesticide residues in fruit-based soft drinks. Talanta. 2011, 83, 1754-1762.
[3] G. Aragay, F. Pino, A. Merkoçi, Nanomaterials for Sensing and Destroying Pesticides. Chemical Reviews, 2012, 112(10), 5317-5338.
[4] N. A. Bakar, A. A. Umar, M. M. Salleh, M. Yahaya, B. Y. Majlis , Localized Surface Plasmon Resonance sensor of Gold Nanoparticles for detection pesticides in water. 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE), 2012, 344-347.
[5] K. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello, Gold Nanoparticles in Chemical and Biological Sensing. Chemical Reviews. 2012, 112(5), 2739-2779.
[6] K. A. Willets, R. P. V. Duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 2007, 58(1), 267-297.
[7] S. Fateixa, H. I. S.Nogueira, T. Trindade, Hybrid nanostructures for SERS: materials development and chemical detection. Physical Chemistry Chemical Physics. 2015, 17(33), 21046-21071.
[8] A. X. Wang, X. Kong, Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering. Materials. 2015, 8(6), 3024-3052.
[9] X. Liu, C. Zong, K. Ai, W. He, L. Lu. Engineering Natural Materials as Surface-Enhanced Raman Spectroscopy Substrates for In situ Molecular Sensing. ACS Applied Materials & Interfaces. 2012, 4(12), 6599-6608.
[10] X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, Z. Liu. Can Graphene be used as a Substrate for Raman Enhancement? Nano Letters. 2010, 10(2), 553-561.
[11] X. Ling, S. Huang, S. Deng, N. Mao, J. Kong, M. S. Dresselhaus, J. Zhang. Lighting Up the Raman Signal of Molecules in the Vicinity of Graphene Related Materials. Acc. Chem. Res. 2015, 48, 1862−1870.
[12] S. Link, M. A. El-Sayed. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. The Journal of Physical Chemistry B. 1999, 103(40), 8410-8426.
[13] M. A. El-Sayed. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Accounts of Chemical Research. 2001, 34(4), 257-264.
[14] S. Link, M. A. El-Sayed. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry. 2000, 19(3), 409-453.
[15] B. J. Wiley, S. H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen, Y. Xia. Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis. The Journal of Physical Chemistry B. 2006, 110(32), 15666-15675.
[16] Y. Sun, Y. Xia. Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst, 2003, 128, 686–691.
[17] E. Hao, G. C. Schatz, J. T. Hupp. Synthesis and Optical Properties of Anisotropic Metal Nanoparticles. Journal of Fluorescence. 2004, 14(4), 331-341.
[18] P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:  Applications in Biological Imaging and Biomedicine. The Journal of Physical Chemistry B. 2006, 110(14), 7238-7248.
[19] J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, Z. Q. Tian. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature. 2010, 464, 392.
[20] S. Keskin, M. Culha. Label-free detection of proteins from dried-suspended droplets using surface enhanced Raman scattering. Analyst. 2012, 137(11), 2651-2657.
[21] Z. Dai, X. Xiao, L. Liao, J. Zheng, F. Mei, W. Wu, J. Ying, F. Ren, C. Jiang. Large-area, well-ordered, uniform-sized bowtie nanoantenna arrays for surface enhanced Raman scattering substrate with ultra-sensitive detection. Applied Physics Letters. 2013, 103(4), 041903.
[22] Y. Zhang, Z. Wang, L. Wu, Y. Pei, P. Chen, Y. Cui. Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique. Analyst. 2014, 139(20), 5148-5154.
[23] L. Pei, Y. Huang, C. Li, Y. Zhang, B.A. Rasco, K. Lai. Detection of Triphenylmethane Drugs in Fish Muscle by Surface-Enhanced Raman Spectroscopy Coupled with Au-Ag Core-Shell Nanoparticles. Journal of Nanomaterials. 2014, 2014, 1-8.
[24] S.-Y. Chou, C.-C. Yu, Y.-T. Yen, K.-T. Lin, H.-L. Chen, W.-F. Su. Romantic Story or Raman Scattering? Rose Petals as Ecofriendly, Low-Cost Substrates for Ultrasensitive Surface-Enhanced Raman Scattering. Analytical Chemistry. 2015, 87(12), 6017-6024.
[25] B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Yi Ling, Q. Xiong. Vertically Aligned Gold Nanorod Monolayer on Arbitrary Substrates: Self-Assembly and Femtomolar Detection of Food Contaminants. ACS Nano. 2013, 7(7), 5993-6000.
[26] J. Chen, Y. Huang, P. Kannan, L. Zhang, Z. Lin, J. Zhang, T. Chen, L. Guo. Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables. Analytical Chemistry. 2016, 88(4), 2149-2155.
[27] T. Yang, Z. Zhang, B. Zhao, R. Hou, A. Kinchla, J. M. Clark, L. He. Real-Time and in Situ Monitoring of Pesticide Penetration in Edible Leaves by Surface-Enhanced Raman Scattering Mapping. Analytical Chemistry. 2016, 88(10), 5243-5250.
[28] L. Zhang, C. Jiang, Z. Zhang. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring. Nanoscale. 2013, 5(9), 3773-3779.
[29] F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, E. Di Fabrizio. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nature Photonics. 2011, 5, 682.
[30] F. Gentile, M. L. Coluccio, N. Coppedè, F. Mecarini, G. Das, C. Liberale, L. Tirinato, M. Leoncini, G. Perozziello, P. Candeloro, F. De Angelis, E. Di Fabrizio. E. Superhydrophobic Surfaces as Smart Platforms for the Analysis of Diluted Biological Solutions. ACS Applied Materials & Interfaces. 2012, 4(6), 3213-3224.
[31] H. Wang, C. S. Levin, N. J. Halas. Nanosphere Arrays with Controlled Sub-10-nm Gaps as Surface-Enhanced Raman Spectroscopy Substrates. Journal of the American Chemical Society. 2005, 127(43), 14992-14993.
[32] B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg. Metal Nanoparticle Gratings: Influence of Dipolar Particle Interaction on the Plasmon Resonance. Physical Review Letters. 2000, 84(20), 4721-4724.
[33] V. A. Markel, A. K. Sarychev. Propagation of surface plasmons in ordered and disordered chains of metal nanospheres. Physical Review B. 2007, 75(8), 085426.
[34] L. Brus. Noble Metal Nanocrystals: Plasmon Electron Transfer Photochemistry and Single-Molecule Raman Spectroscopy. Accounts of Chemical Research. 2008, 41(12), 1742-1749.
[35] S. Zou, G. C. Schatz. Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chemical Physics Letters. 2005, 403(1), 62-67.
[36] S. Zou, N. Janel, G. C. Schatz. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. The Journal of Chemical Physics. 2004, 120(23), 10871-10875.
[37] V. A. Markel. Comment on “Silver nanoparticle array structures that produce remarkably narrow plasmon line shapes”. The Journal of Chemical Physics. 2005, 122(9), 097101.
[38] J. Y. Cheng, D. P. Sanders, H. D. Truong, S. Harrer, A. Friz, S. Holmes, M. Colburn, Hinsberg W. D. Simple and Versatile Methods To Integrate Directed Self-Assembly with Optical Lithography Using a Polarity-Switched Photoresist. ACS Nano. 2010, 4(8), 4815-4823.
[39] Y. S. Jung, W. Jung, H. L. Tuller, C. A. Ross. Nanowire Conductive Polymer Gas Sensor Patterned Using Self-Assembled Block Copolymer Lithography. Nano Letters. 2008, 8(11), 3776-3780.
[40] Q. Guo, M. Xu, Y. Yuan, R. Gu, J. Yao. Self-Assembled Large-Scale Monolayer of Au Nanoparticles at the Air/Water Interface Used as a SERS Substrate. Langmuir. 2016, 32(18), 4530-4537.
[41] F. Caruso, M. Spasova, V. Salgueiriño-Maceira, L. M. Liz-Marzán. Multilayer Assemblies of Silica-Encapsulated Gold Nanoparticles on Decomposable Colloid Templates. Advanced Materials. 2001, 13(14), 1090-1094.
[42] Y. Ma, L. Qi. Solution-phase synthesis of inorganic hollow structures by templating strategies. Journal of Colloid and Interface Science. 2009, 335(1), 1-10.
[43] Y. Wan, S.-H. Yu. Polyelectrolyte Controlled Large-Scale Synthesis of Hollow Silica Spheres with Tunable Sizes and Wall Thicknesses. The Journal of Physical Chemistry C. 2008, 112(10), 3641-3647.
[44] Y. Sun, B. Mayers, Y. Xia. Metal Nanostructures with Hollow Interiors. Advanced Materials. 2003, 15(7-8), 641-646.
[45] C. Wu, T. Liu, B. Chu, D. K. Schneider, V. Graziano. Characterization of the PEO−PPO−PEO Triblock Copolymer and Its Application as a Separation Medium in Capillary Electrophoresis. Macromolecules. 1997, 30(16), 4574-4583.
[46] K. Nakashima, P. Bahadur. Aggregation of water-soluble block copolymers in aqueous solutions: Recent trends. Advances in Colloid and Interface Science. 2006, 123-126 (Supplement C), 75-96.
[47] S. P. Naik, S. Yamakita, M. Ogura, T. Okubo. Studies on mesoporous silica films synthesized using F127, a triblock co-polymer. Microporous and Mesoporous Materials. 2004, 75(1), 51-59.
[48] B. C. Clover. Ph. D. dissertation, Micelle and Aggregate Formation in Amphiphilic Block Copolymer Solutions. The University of Maryland, College Park, MD, 2010.
[49] T. Sakai, P. Alexandridis. Mechanism of Gold Metal Ion Reduction, Nanoparticle Growth and Size Control in Aqueous Amphiphilic Block Copolymer Solutions at Ambient Conditions. The Journal of Physical Chemistry B. 2005, 109(16), 7766-7777.
[50] B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu, Y. Xia. Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science. 2009, 324(5932), 1302-1305.
[51] L. Wang, Y. Yamauchi. Block Copolymer Mediated Synthesis of Dendritic Platinum Nanoparticles. Journal of the American Chemical Society. 2009, 131(26), 9152-9153.
[52] L. Wang, Y. Yamauchi. Autoprogrammed Synthesis of Triple-Layered Au@Pd@Pt Core−Shell Nanoparticles Consisting of a Au@Pd Bimetallic Core and Nanoporous Pt Shell. Journal of the American Chemical Society. 2010, 132(39), 13636-13638.
[53] L. Wang, Y. Yamauchi. Strategic Synthesis of Trimetallic Au@Pd@Pt Core−Shell Nanoparticles from Poly(vinylpyrrolidone)-Based Aqueous Solution toward Highly Active Electrocatalysts. Chemistry of Materials. 2011, 23(9), 2457-2465.
[54] L. Wang, Y. Yamauchi. Metallic Nanocages: Synthesis of Bimetallic Pt–Pd Hollow Nanoparticles with Dendritic Shells by Selective Chemical Etching. Journal of the American Chemical Society. 2013, 135(45), 16762-16765.
[55] O. Pena-Rodriguez, U. Pal. Au@Ag core-shell nanoparticles: efficient all-plasmonic Fano-resonance generators. Nanoscale. 2011, 3(9), 3609-3612.
[56] J. Li, S. K. Cushing, J. Bright, F. Meng, T. R. Senty, P. Zheng, A. D. Bristow, N. Wu. Ag@Cu2O Core-Shell Nanoparticles as Visible-Light Plasmonic Photocatalysts. ACS Catalysis. 2013, 3(1), 47-51.
[57] B. Liu, G. Han, Z. Zhang, R. Liu, C. Jiang, S. Wang, M.-Y. Han. Shell Thickness-Dependent Raman Enhancement for Rapid Identification and Detection of Pesticide Residues at Fruit Peels. Analytical Chemistry. 2012, 84(1), 255-261.
[58] G. Wanka, H. Hoffmann, W. Ulbricht. Phase Diagrams and Aggregation Behavior of Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) Triblock Copolymers in Aqueous Solutions. Macromolecules. 1994, 27(15), 4145-4159.
[59] F. C. Chang, Y. Li, R. J. Wu, C. H. Chen. Floating 3-dimensional nano-array as SERS sensors. Unpublished results.
[60] L. Huang, Y. Han, S. Dong. Highly-branched mesoporous Au-Pd-Pt trimetallic nanoflowers blooming on reduced graphene oxide as an oxygen reduction electrocatalyst. Chemical Communications. 2016, 52(56), 8659-8662.
[61] H. Ataee-Esfahani, M. Imura, Y. Yamauchi. All-Metal Mesoporous Nanocolloids: Solution-Phase Synthesis of Core–Shell Pd@Pt Nanoparticles with a Designed Concave Surface. Angewandte Chemie International Edition. 2013, 52(51), 13611-13615.
[62] H. Ataee-Esfahani, L. Wang, Y. Nemoto, Y. Yamauchi. Synthesis of Bimetallic Au@Pt Nanoparticles with Au Core and Nanostructured Pt Shell toward Highly Active Electrocatalysts. Chemistry of Materials. 2010, 22(23), 6310-6318.
[63] A. Shiohara, J. Langer, L. Polavarapu, L. M. Liz-Marzan. Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing. Nanoscale. 2014, 6(16), 9817-9823.
[64] S. Sánchez-Cortés, C. Domingo, J. V. García-Ramos, J. A. Aznárez. Surface-Enhanced Vibrational Study (SEIR and SERS) of Dithiocarbamate Pesticides on Gold Films. Langmuir. 2001, 17(4), 1157-1162.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊