|
References
[1]J. P. Rino and N. Studart, “Structural correlations in titanium dioxide,” Phys. Rev. B, vol. 59, no. 10, pp. 6643-6649, 1999. [2]M. H. Ronald and J. F. Robert, in Catalytic Air Pollution Control – Commercial Technology, (International Thomson Publishing Inc., New York, 1995), p. 15. [3]J. H. Braun, A. Baidins, and R. E. Marganski, “TiO2 pigment technology: A review,” Pro.Org. Coat., vol. 20, no. 2, pp. 105-138, 1992. [4]A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, pp. 37-38, 1972. [5]H. Kishimoto, K. Takahama, N. Hashimoto, Y. Aoi, and S. Deki, “Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD),” J. Mater. Chem., vol. 8, no. 9, pp. 2019-2024, 1998. [6]L. M. Doeswijk, H. H. C. de Moor, D. H. A. Blank, and H. Rogalla, “Passivating TiO2 coatings for silicon solar cells by pulsed laser deposition,” Appl. Phys. A, vol. 69, pp. s409-s411, 1999. [7]V. Kiisk, I. Sildos , O. Sild, and J. Aarik, “The influence of a waveguiding structure on the excitonic luminescence of anatase thin films,” Optical Materials, vol. 27, no. 1, pp. 115-118, 2004. [8]S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. Yan, “MOSFET transistors fabricated with high permitivity TiO2 dielectrics,” IEEE Trans. Electron Devices, vol. 44, no. 1, pp. 104-109, 1997. [9]G. P. Burns, I. S. Bladwin, M. P. Hastings, and J. G. Wilkes, “The plasma oxidation of titanium thin films to form dielectric layers,” J. Appl. Phys., vol. 66, no. 6, pp. 2320-2324, 1989. [10] Y. V. Pleskov and Y. Y. Gurevich, in Semiconductor Photoelectrochemistry, Consultants Bureau, (New York and London, 1968), pp. 1-35. [11] J. H. Carey, J. Lawrence, and H. M. Tosine, “Photodechlorination of PCB''s in the presence of titanium dioxide in aqueous suspension,” Bull. Environ. Contam. Toxicol., vol. 16, pp. 697-701, 1976. [12] R. E. Marinangeli and D. F. Ollis, “Photo-assisted heterogeneous catalysis with optical fibers (I): Isolated single fiber,” AIChE J., vol. 23-4, pp. 415-426, 1977. [13] R. E. Marinangeli and D. F. Ollis “Photo-assisted heterogeneous catalysis with optical fibers (II): Nonisothermal single fiber and fiber bundle,” AIChE J., vol. 26-6, pp. 1000-1008, 1980. [14] D. Y. Goswami, “A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection process,” J. Solar Energy Eng., vol. 119, pp. 101-107, 1997. [15] D. F. Ollis, in Solar Assisted Photocatalysis for Water Purification (Kluwer Academic, Dordrecht, The Netherlands, 1991), pp. 593-622. [16] D. Y. Goswami and D. M. Blake, “Cleaning up with Sunshine,” Mech. Eng., vol. 118-8, pp. 56-59, 1996. [17] M. S. Mehos and C. S. Turchi, “Field testing solar photocatalytic detoxification on TCE-contaminated groundwater,” Environ. Prog., vol. 12, pp. 194-199, 1993. [18] M. R. Prairie, L. R. Evans, and B. M. Stange, “An investigation of Ti02 photocatalysis for the treatment of water contaminated with metals and organic chemicals,” Environ. Sci. Tech., vol. 27-9, pp. 1776-1782, 1993. [19] D. Bockelmann, D. Weichgreb, R. Goslich, and D. Bahnemann, “Concentrating versus non-concentrating reactors for solar water detoxification,” Solar Energy Materials and Solar Cells, vol. 38, pp. 441-451, 1995. [20] J. C. Crittenden, Y. Zhang, and D. W. Hand, “Sun fuels groundwater remediation,” Wat. Environ. Tech., vol. 7, no. 2, pp. 15-16, 1995. [21] J. B. Farrell, “Discussion of solar detoxification of fuel-contaminated groundwater using fixed-bed photocatalysts,” Wat. Environ. Res , vol. 69, p. 254, 1997. [22] J. A. Herrera, J. M. Dona, A. Viera, E. Tello, C. Valdes, J. Arana, and J. Perez, “The photocatalytic disinfection of urban waste waters,” Chemosphere, vol. 41, no. 3, pp. 323-327, 2000. [23] I. R. Bellobono, A. Carrara, B. Barni, and A. Gazzotti, “Laboratory- and pilot-plant-scale photodegradation of chloroaliphatics in aqueous solution by photocatalytic membranes immobilizing titanium dioxide,” J. Photochem. Photob. A: Chem., vol. 84, no. 1, pp. 83-90, 1994. [24] D. F. Ollis, E. Pelizzetti and N. Serpone, “Photocatalyzed destruction of water contaminants,” Enviro. Sci. Tech., vol. 25, no. 9, pp. 1523-1529, 1991. [25] N. Serpone, in Solar Photochemistry and Heterogeneous Photocatalysis : A Convenient and Practical Utilization of Sunlight Photons (Elesevier, Amsterdam, 1989), pp. 297-315. [26] E. Pelizzetti, V. Maurino, and C. Minero, “Photocatalytic degradation of atrazine and other s-triazine herbicides,” Environ. Sci. Tech., vol. 24, no. 10, pp. 1559-1565, 1990. [27] H. Kisch, in Photocatalysis Fundamentals and Applications (Willey, 1989), pp. 1-8. [28] A. Salinaro, A. V. Emeline, and J. Zhao, “Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part II: experimental determination of quantum yields,’ Pure Appl. Chem., vol. 71, no. 2, pp. 321-335, 1999. [29] N. Serpone, A. Salinaro, A. Emeline, and V. Ryachuk, “Turnovers and photocatalysis: A mathematical description,” J. Photochem. Photob. A: Chem., vol. 130, no. 2-3, pp. 83-94, 2000. [30] N. J. Serpone, “Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis,” Photochem. Photobiol. A: Chem., vol. 104, no. 1-3, pp. 1-12, 1997. [31] M. S. Arredondo, Faculty of Graduate Studies, The University of Western Ontario, London, Ontario, 2002. [32] M. Grztxel, “Photoelectrochemical cells,” Nature, vol. 414, pp. 338-344, 2001. [33] M. Barbeni, E. Pramauro, E. Pelizzetti, E. Borgarello, and N. Serpone, “Photodegradation of pentachlorophenol catalyzed by semiconductor particles,” Chemosphere, vol. 14, no. 2, pp. 195-208, 1985. [34] J. M. Herrmann, C. Guillard, and P. Pichat, “Heterogeneous photocatalysis: an emerging technology for water treatment,” Catalysis Today, vol. 17, pp. 7-20, 1993. [35] M. A. Fox and M. T. Dulay, “Heterogeneous photocatalysis,” Chem. Rev., vol. 93, pp. 341-357, 1993. [36] M. R. Hoffmann, S. T. Martin, W. Choi and D. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev., vol. 95, pp. 69-96, 1995. [37] A. Aharoni, in Introduction to the Theory of Ferromagnetism (Oxford Univ. Press, New York, 1996). [38] G. San Vicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon,” Thin Solid Films, vol. 391, pp. 133-137, 2001. [39] J. V. Grahn, M. Linder, and E. Fredriksson, “In situ growth of evaporated TiO2 thin films using oxygen radicals: Effect of deposition temperature,” J. Vac. Sci. Technol. A, vol. 16, no. 4, pp. 2495-2500, 1998. [40] R. Dannenberg and P. Greene, “Reactive sputter deposition of titanium dioxide,” Thin Solid Films, vol. 360, pp. 122-127, 2000. [41] K. S. Yeung and Y. W. Lam, “Simple chemical vapor deposition method for depositing thin TiO2 films,” Thin Solid Films, vol. 109, no. 2, pp. 169-178, 1983. [42] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films, vol. 371, pp. 126-131, 2000. [43] H. S. Kim, D. C. Gilmer, S. A. Campbell, and D. L. Polla, “Titanium dioxide films prepared by photo-induced sol-gel processing using 172 nm excimer lamps,” Appl. Phys. Lett., vol. 69, no. 25, pp. 3860-3862, 1996. [44] Y. Gao and S. A. Chambers, “MEB growth and characterization of TiO2 and Nb-doped TiO2 films,” Mater. Lett., vol. 26, no. 4-5, pp. 217-221, 1996. [45] H. Nagayama, H. Honda, and H. Kawahara, “A new process for silica coating ,” J. Electrochem. Soc., vol. 135, pp. 2013-2016, 1988. [46] C. F. Yeh, S. S. Lin, and T. Y. Hong, “Low-temperature processed MOSFETs with liquid phase deposited SiO2-xFx as gate insulator,” IEEE Electron Device Lett., vol. 16, no. 7, pp. 316-318, 1995. [47] C. F. Yeh, S. S. Lin, C. L. Chen, and Y. C. Yang, “Novel technique for SiO2 formed by liquid-phase deposition for low-temperature processed polysilicon TFT,” IEEE Electron Device Lett., vol. 14, no. 8, pp. 403-405, 1993. [48] S. Deki, Y. Aoi, O. Hiroi, and A. Kajinami, “Titanium (IV) oxide thin films prepared from aqueous solution,” Chem. Lett., vol. 17, pp. 433-434, 1996. [49] H. Kishimoto, K. Takahama, N. Hashimoto, Y. Aoi, and S. Deki, “Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD),” J. Mater. Chem., vol. 8, no. 9, pp. 2019-2024, 1998. [50] N. Serpone and D. Lawless, “Photoconductivity, and photocatalytic studies of TiO2 colloids,” Langmuir, vol. 10, pp. 643-652, 1994. [51] S. W. Ryu, E. J. Kim, S. K. Ko, and S. H. Hahn, “Effect of calcination on the structural and optical properties of M/TiO2 thin films by RF magnetron co-sputtering,“ Mater. Lett., vol. 58, pp. 582-587, 2004. [52] L. Palmisano, V. Augugliaro, and A. Sclafani, “Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation,” J. Phys. Chem., vol. 92, pp. 6710-6713, 1988. [53] M. Gratxel and R. F. Howe, “Electron paramagnetic resonance studies of doped TiO2 colloids,” J. Phys. Chem., vol. 94, pp. 2566-2572, 1990. [54] Y. Bessekhouad, D. Robert, and J. V. Weber, “Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions,” Catalysis Today, vol. 101, pp. 315-321, 2005. [55] K. Rajeshwar, N. R. De Tacconi, and C. R. Chenthamarakshan, “Semiconductor-based composite materials: preparation, properties, and performance,” Chem. Mater., vol. 13, pp. 2765-2782, 2001. [56] Y. Ma, J. B. Qiu, Y. A. Cao, Z. S. Guna, and J. N. Yao, “Photocatalytic activity of TiO2 films grown on different substrates,” Chemosphere, vol. 44, no. 5, pp. 1087-1092, 2001. [57] R. K. Pandey, S. N. Sahu, and S. Chandra, in Handbook of Semiconductor Electrodeposition (New York Marcel Dekker, 1996), ch. 7, pp. 205-238. [58] T. Deguchi, K. Imai, and M. Iwasaki, “Photocatalyrically highly active nanocomposite films consisting of TiO2 particle,” J. Electrochem. Society., vol. 147, pp. 2263-2267, 2000. [59] Y. T. Kwon, K. Y. Song, and W. Lee, “Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction,” J. Cat., 2000, vol. 191, no. 1, pp. 192-199. [60] R. F. Service, “Will UV Lasers Beat the Blues?” Science, vol. 276, no. 5314, p. 895, 1997. [61] B. J. Ingram, G. B. Gonzalez, D. R. Kammler, M. I. Bertoni, and T. O. Mason, “Chemical and structural factors governing transparent conductivity in oxides,” J. Electroceram., vol. 13, no. 1-3, pp. 167-175, 2004. [62] S. C. Minne, S. R. Manalis, and C. F. Quate, “Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators,” Appl. Phys. Lett., vol. 67, pp. 3918-3920, 1995. [63] W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yia, “Single-wall carbon nanotube atomic force microscope probes,” Appl. Phys. Lett., vol. 80, pp. 4232-4235, 2002. [64] Y. B. Li, T. Bando, T. Sato, and K. Kurashima, “ZnO nanobelts grown on Si substrate,” Appl. Phys. Lett., vol. 81, pp. 144-146, 2002. [65] B. D. Tao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett., vol. 81, pp. 757-759, 2002. [66] X. Y. Kong and Z. L. Wang, “Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts,” Nano Lett., vol. 3, no. 13, pp. 1625-1631, 2003. [67] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater., vol. 15, no. 5, pp. 464-466, 2003. [68] S. Deki, T. Aoi, O. Hiroi, and A. Kajinami, “A novel wet process for the preparation of vanadium dioxide thin film,” J. Mater. Chem., vol. 32, pp. 4269-4273, 1997. [69] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, “Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process,” J. Phys. Chem. B, vol. 108, pp. 3955-3958, 2004. [70] X. Gao, X. Li, and W. Yu, “Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex,” J. Phys. Chem. B, vol. 109, no. 3, pp. 1155-1161, 2005. [71] B. D. Cullity, S. R. Stock, in Elements of X-ray diffraction, (Prentice Hall, Third Edition 2001), ch. 5, p. 170. [72] J. Li, M. Tammer, F. Kremer, A. Komp, and H. Finkelmann, “Strain-induced reorientation and mobility in nematic liquid-crystalline elastomers as studied by time-resolved FTIR spectroscopy,” Eur. Phys. J. E, vol. 17, no. 4, pp. 423-428, 2005. [73] R. Brause, H. Möltgen, and K. Kleinermanns, “Characterization of laser-ablated and chemically reduced silver colloids in aqueous solution by UV/VIS spectroscopy and STM/SEM microscopy,” Appl. Phys. B, vol. 75, no. 6-7, pp. 711-716, 2002. [74] C. H. Chen, E. M. Kelder, and J. Schoonman, “Electrostatic sol-spray deposition (ESSD) and characterization of nanostructured TiO2 thin films,” Thin Solid Films, vol. 342, pp. 35-41, 1999. [75] H. Yoneyama, Y. Yoyoguchi, and H. Tamura, “Quasirandom spanning tree model for the early river network,” J. Phys. Chem., vol. 76, no. 18, pp. 3460-3463, 1972. [76] N. S. Foster, R. D. Noble, and C. A. Koval, “Reversible photoreductive deposition and oxidative dissolution of copper ions in titanium dioxide aqueous suspensions,” Environ. Sci. Technol., vol. 27, pp. 350-356, 1993. [77] S. Yamazaki, N. Takemura, and Y. Yoshinaga, “Transmittance change of the TiO2 thin film by photoreductive deposition of Cu(II),” J. photochem. photobiol., A. Chem., vol. 161, no. 1, pp. 57-60, 2003. [78] Http://www.phys.ntnu.no/brukdef/prosjekter/ekspoptikk /diploma.htm. [79] Instruction of Edinburgh Instruments, UK. [80] V. T. Nikolai, R. Lasse, Y. T. Andrei, H. Juho, H. H. Passv, and L. Helge, “Photoinduced electron transfer in phytochlorin-[60] fullerene dyads,” J. Am. Chem. Soc., vol. 121, pp. 9378-9387, 1999. [81] W. Stutius, “Organometallic vapor deposition of epitaxial ZnSe films on GaAs substrates,” Appl. Phys. Lett., vol. 33, no. 7, pp. 656-658, 1978. [82] M. Geiger, A. Bauknecht, F. Adler, H. Schweizer, and F. Scholz, “Observation of the 2D-3D growth mode transition in the InAs/GaAs system,” J. Cryst. Growth, vol. 170, pp. 558-562, 1997. [83] I. Moriguchi, K. Sonoda, K. Matuso, S. Kagawa, and T. Yasutake, “Oriented growth of thin films of titanium oxyfluoride at the interface of an air/water monolayer,” Chem. Commun., vol. 15, pp. 1344-1345, 2001. [84] H. Nagayama, H. Honda, and H. Kawahara, “Preparation of photocatalyst doped TiO2 with liquid phase deposition,” J. Electrochem. Soc., vol. 359, pp. 2013-2016, 1988. [85] S. Deki, T. Aoi, O. Hiroi, and A. Kajinami, “A Novel wet process for the preparation of vanadium dioxide thin film,” J. Mater. Chem., vol. 32, pp. 4269-4273, 1997. [86] R. H. Schmitt, H. L. Glove, and R. D. Brown, “The equivalent conductance of the hexafluorocomplexes of group IV (Si, Ge, Sn, Ti, Zr, Hf),” J. Am. Chem. Soc., vol. 82, no. 20, pp. 5292-5295, 1960. [87] C. A. Wamser, “Equilibria in the System Boron Trifluoride-Water at 25°,” J. Am. Chem. Soc., vol. 73, no. 1, pp. 409-416, 1951. [88] N. M. Laptash, I. G. Maslennikova, and T. A. Kaidalova, “Ammonium oxofluorotitanates ,” J. Fluor. Chem., vol. 99, no. 2, pp. 133-137, 1999. [89] N. M. Laptash, E. B. Merkulov, and I. G. Maslennikova, “Thermal Behaviour of Ammonium Oxofluorotitanates(IV),” J. Therm. Anal. Calorim., vol. 63, no. 1, pp. 197-204, 2001. [90] I. N. Flerov, V. D. Fokina, F. B. Asya, and N. M. Laptash, “Phase transitions in perovskite-like oxyfluorides (NH4)3WO3F3 and (NH4)3TiOF5,” Solid State Sci., vol. 6, no. 4, pp. 367-370, 2004. [91] B. R. Heywood and S. Mann, “Organic template-directed inorganic crystallization: oriented nucleation of barium sulfate under compressed Langmuir monolayers,” J. Am. Chem. Soc., vol. 114, no. 12, pp. 4681-4686, 1992. [92] J. H. Fendler and F. C. Meldrum, “The colloid chemical approach to nanostructured materials,” Adv. Mater., vol. 7, no. 7, pp. 607-632, 1995. [93] J. Yang and J. H. Fendler, “Morphology control of PbS nanocrystallites, epitaxially grown under mixed monolayers,” J. Phys. Chem., vol. 99, pp. 5505-5511, 1995. [94] C. M. Shih, Ph. D. theory, Dpt. of EE, National Sun Yat-sen University, Kaoshiung, Taiwan, 2005. [95] S. M. Sze, in Semiconductor Devices, Wiley, New York, 1985, p. 452. [96] V. Lehmann and U. Gosele, “Porous silicon formation: A quantum wire effect,“ Appl.Phys. Lett., vol. 58, no. 8, pp. 856-858, 1991. [97] D. M. Knotter, “Etching mechanism of vitreous silicon dioxide in HF-based solutions,” J. Am. Chem. Soc., vol. 122, no. 18, pp. 4345-4351, 2000. [98] C. F. Yeh and C. L. Chen, “Controlling fluorine concentration and thermal annealing effect on liquid-phase deposited SiO2–xFx films,” J. Electrochem. Soc., vol. 142, no. 10, pp. 3579-3584, 1995. [99] S. Lee and J. W. Park, “Effect of fluorine on dielectric properties of SiOF films,” J. Appl. phys., vol. 80, no. 9, pp. 5260-5263, 1996. [100]Y. Liu and R. O. Claus, “Blue light emitting nanosized TiO2 colloids,“ J. Am. Chem. Soc., vol. 119, no. 22, pp. 5273-5274, 1997. [101]S. K. Poznyak, V. V. Sviridov, A. I. Kulak, M. P. Samtsov, “Photoluminescence and electroluminescence at the TiO2 - electrolyte interface,” J. Electroanal. Chem., vol. 340, pp. 73-97, 1992. [102]P. Sriamornsak and N. Thirawong, “Use of back-scattered electron imaging as a tool for examination matrix structure of calcium pectinate,” Int. J. Pharm., vol. 267, pp. 151-156, 2003. [103]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and T. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, pp. 269-272, 2001. [104]I. G. Maslennikova, N. M. Laptash, T. A. Kaidalova, and V. Y. Kavun, “Volatile ammonium fluorotitanate,” Spectroscopy Letters, vol. 34, no. 6, pp. 775-781, 2001. [105]W. Ma, Z. Lu, and M. Zhang, “Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy,” Appl. Phys. A, vol. 66, no. 6, pp. 621-627, 1998. [106]V. Fawcett, D. A. Lon, and V. N. Sankaranarayanan, “A Raman spectroscopic study of a single crystal of sodium ammonium selenate dihydrate, NaNH4SeO4•2H2O over the temperature range 293-89 K,” J. Ramam Spectroscopy, vol. 3, no. 2-3, pp. 177-196, 1975. [107]M. Kemiche, P. Becker, and C. Carabatos, “Vibration spectra of ammonium hydrogen malate (NH4HC4H4O5),” J. Ramam Spectroscopy, vol. 27, pp. 35-39, 1996. [108]T. P. Niesen, J. Bill, and F. Aldinger, “Deposition of titania thin films by a peroxide route on different functionalized organic self-assembled monolayers ,” Chem. Mater., vol. 13, pp. 1552-1559, 2001. [109]J. C. Yu, J. Yu, L. Zhang, and W. Ho, “Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders,” J. Photochem. Photobiol. A-Chem., vol. 148, no. 1-3, pp. 263-271, 2002. [110]D. Li, H. Haneda, S. Hishita, and N. Ohashi, “Visible-light-driven N-F-Codoped TiO2 photocatalysts. 1. synthesis by spray pyrolysis and surface characterization,” Chem. Mater., vol. 17, no. 10, pp. 2588-2595, 2005. [111]D. Li, H. Haneda, S. Hishita, N. Ohashi, and N. K. Labhsetwar, “Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde,” J. Fluorine Chem., vol. 126, pp. 69-77, 2005. [112]D. Li, H. Haneda, S. Hishita, and N. Ohashi, “Visible-light-driven N-F-Codoped TiO2 photocatalysts. 2. optical characterization, photocatalysis, and potential application to air purification,” Chem. Mater., vol. 17, no. 10, pp. 2596-2602, 2005. [113]B. D. Cullity and S. R. Stock, in Elements of X-ray diffraction, (Prentice Hall, Third Edition 2001), ch. 5, p. 170. [114]Y. R. Lin, C. Y. Kuo, and S. Y. Lu, “Stop band tuning of three-dimensional photonic crystals through coating of semiconductor materials,” Appl. Phys. A, vol. 79, no. 7, pp. 1741-1745, 2004. [115]M. H. Ronald and J. F. Robert, in Catalytic Air Pollution Control – Commercial Technology, (International Thomson Publishing Inc., New York, 1995), p. 15. [116]J. G. Yu, J. C. Yu, B. Cheng, S. K Hark, and K. Iu, “The effect of F--doping and temperature on the structural and textural evolution of mesoporous TiO2 powders,” J. Solid State Chem., vol. 174, no. 2, pp. 372-380, 2003. [117]S. Mozia, M. Tomaszewska, B. Kosowska, B. Grzmil, A. W. Morawski, and K. Kalucki, “Decomposition of nonionic surfactant on a nitrogen-doped photocatalyst under visible-light irradiation,” Appl. Catal. B-Environ., vol. 55, no. 3, pp. 195-200, 2005. [118]T. Sekiya, K. Ichimura, M. Igarashi, and S. Kurita, “Absorption spectra of anatase TiO2 single crystals heat-treated under oxygen atmosphere,” J. Phys. Chem. Solids, vol. 61, no. 8, pp. 1237-1242, 2000. [119]K. Nasu and Y. Toyozawa, ”Tunneling process from free state to self-trapped state of exciton” J. Phys. Soc. Jap., vol. 50, no. 1, pp. 235-245, 1981. [120]J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C.Yu, and W. K. Ho, “The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition,” J. Phys. Chem. B, vol. 107, no. 50, pp. 13871-13879, 2003. [121]Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, W. Cheng, and S. X. Wang, “Preparation and photoluminescence of highly ordered TiO2 nanowire arrays,” Appl. Phys. Lett, vol. 78, no. 8, pp. 1125-1127, 2001. [122]O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, and J. T. Yates, “Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light,“ J. Phys. Chem. B, vol. 108, no. 19, pp. 6004-6008, 2004. [123]H. Yoneyama, Y. Yoyoguchi, and H. Tamura, “Reduction of methylene blue on illuminated titanium dioxide in methanolic and aqueous solutions,” J. Phys. Chem., vol. 76, no. 23, pp. 3460-3464, 1972. [124]K. Onda, B. Li, J. Zhao, K. D. Jordan, J. Yang, and H. Petek, “Wet electrons at the H2O/TiO2(110) surface,“ Science, vol. 308, no. 5725, pp. 1154-1158, 2005. [125]Z. Zou, J. Ye, K. Sayama, and H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature, vol. 414, pp. 625-627, 2001. [126]M. Danek, K. F. Jensen, C. B. Murray, and M. G. Bawendi, “Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe,” Chem. Mater., vol. 8, no. 1, pp. 173-180, 1996. [127]R. Krishnan, R. D. T. Norma, and C. R. Chenthamarakshan, “Semiconductor-based composite materials: preparation, properties, and performance,” Chem. Mater., vol. 13, no. 9, pp. 2765-2782, 2001. [128]D. Li, H. Haneda, N. K. Labhsetwar, S. Hishita, N. Ohashi, “Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies,” Chem. Phys. Lett, vol. 401, pp. 579-584, 2005. [129]P. M. Kumar, S. Badrinarayanan, and M. Sastry, “Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states,” Thin Solid Films, vol. 358, no. 1, pp. 122-130, 2000. [130]J. K. White, C. A., Musca, H. C. Lee, and L. Faraone, “Hydrogenation of ZnS passivation on narrow-band gap HgCdTe,” Appl. Phys. Lett , vol. 76, pp. 2448-2450, 2000. [131]J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Cryst. Growth, vol. 27, pp. 118- 125, 1974. [132]Y. Zhang, J. Li and J. Wang, “Substrate-assisted crystallization and photocatalytic properties of mesoporous TiO2 thin films,” Chem. Mater. vol. 18, no. 12, pp. 2917-2923, 2006. [133]Http://www.chem.uab.edu/advincula/ResearchGroup/contents/instrumentation/CAG/CAG.htm [134]X. Wu, L. Zheng, and D. Wu, “Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route,” Langmuir, vol. 21, no. 7, pp. 2665-2667, 2005. [135]N. Sakai, A. Fujishima, T. Watanabe, and K. Hashimoto, “Enhancement of the photoinduced hydrophilic conversion rate of TiO2 film electrode surfaces by anodic polarization,” J. Phys. Chem. B, vol. 105, pp. 3023-3026, 2001. [136]M. K. Lee, T. H. Shih, and C. C. Lan, “High-density ZnSe self-assembled quantum dots grown on ZnS/GaAs with special ZnS buffer layer,” Journal of the Electrochemical Society, vol. 153, no. 8, pp. G778-G781, 2006. [137]M. K. Lee, C. C. Lan, and T. H. Shih, “Mechanism of cluster formation on zinc selenium/gallium arsenic prepared by metallorganic vapor phase epitaxy,” Journal of the Electrochemical Society, vol. 152, no. 12, pp. G929-G932, 2005. [138]S. Taniguchi, T. Hino, S. Itoh, N. Nakayama, A. Ishibashi, and M. Ikeda, “100h II-VI blue-green laser diode,” Electron. Lett., vol. 32, no. 6, pp. 552-553, 1996. [139]M. A. Haase, J. Qin, J. M. Depuydt, and H. Cheng, “Blue-green laser diodes,” Appl. Phys. Lett., vol. 59, no. 11, pp. 1272-1274, 1991. [140]H. Jeon, J. Ding, W. Patterson, A. V. Nurmikko, W. Xie, D. C. Grillo, M. Kobayashi, and R. L. Gunshor, “Blue-green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells,” Appl. Phys. Lett., vol. 59, no. 27, pp. 3619-3621, 1991. [141]K. Katayama, H. Matsubara, F. Nakanishi, T. Nakamura, H. Doe, A. Saegusa, T. Mitsui, T. Matsuoka, M. Irikura, T. Takebe, S. Nishine, and T. Shirakawa, “ZnSe-based white LEDs,” J. Crys. Grow., vol. 214/215, pp. 1064-1070, 2000. [142]I. K. Sou, Z. H. Ma, and G. K. L. Wong, “Photoresponse studies of ZnSSe visible-blind ultraviolet detectors: A comparison to ZnSTe detectors,” Appl. Phys. Lett., vol. 75, no. 23, 3707-3709, 1999. [143]J. L. Merz, S. Lee, and J. K. Furdyna, “Self-organized growth, ripening, and optical properties of wide-bandgap II–VI quantum dots,” J. Cryst. Growth, vol. 184/185, pp. 228-236, 1998. [144]J. W. McCamy, D. H. Lowndes, J. D. Budai, R. A. Zuhr, and X. Zhang, “Epitaxial ZnS films grown on GaAs (001) and (111) by pulsed-laser ablation.,” J. Appl. Phys., vol. 73, no. 11, pp. 7818-7822, 1993. [145]S. Nakanura, S. Takagimoto, T. Ando, T. Yamada, and T. Taguchi, “Structural characterization of high-quality ZnS epitaxial layers grown on GaAs substrates by low-pressure metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 40, no. 12, pp. 6993-6997, 2001. [146]Y. G. Kim, Y. S. Joh, J. H. Song, E. D. Sim, K. S. Baek, and S. K. Chang, “Strain-sensitive size modulations in ZnSe/ZnS quantum dots grown on GaAs substrates,” Appl. Phys. Lett., vol. 85, no. 11, pp. 2056-2058, 2004. [147]T. Y. Zhou and X. Q. Xin, “Room temperature solid-state reaction - a convenient novel route to nanotubes of zinc sulfide,” Nanotechnology, vol. 15, pp. 534-536, 2004. [148]Y. G. Kim, Y. S. Joh, J. H. Song, K. S. Baek, and S. K. Chang, “Temperature-dependent photoluminescence of ZnSe/ZnS quantum dots fabricated under the Stranski–Krastanov mode,” Appl. Phys. Lett., vol. 83, no. 13, pp. 2656-2658, 2003. [149]T. Tawara, S. Tanaka, H. Kumano, and I. Suemune, “Growth and luminescence properties of self-organized ZnSe quantum dots,” Appl. Phys. Lett., vol. 75, no. 2, pp. 235-237, 1999. [150]C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B, vol. 39, no. 3, pp. 1871-1883, 1989. [151]Y. G. Kim, Y. S. Joh, J. H. Song, E. D. Sim, K. S. Baek, and S. K. Chang, “Quantum confinement effects on carriers in self-assembled ZnSe/ZnS quantum dots in a lens shape,” Phys. Stat. Sol. c, vol. 1, no. 4, pp. 775-778, 2004. [152]A. G. Cullis, A. T. Pidduck, and M. T. Emeny, “Morphology and strain relief in the InGaAs/GaAs epitaxial system,” Inst. Phys. Conf. Ser., vol. 146, p. 163, 1995. [153]J. B. Smathers, E. K. Kneedler, B. R. Bennett, and B. T. Jonker, “Nanometer scale surface clustering on ZnSe epilayers,” Appl. Phys. Lett., vol. 72, no. 10, pp. 1238-1240, 1998. [154]X. B. Zhang and S. K. Hark, “On the formation and nature of nanometer size clusters on the surface of ZnSe epilayers,” Appl. Phys. Lett., vol. 74, no. 25, pp. 3857-3859, 1999. [155]D. Hommel, T. Heinke, A. Waag, and G. Lanwehr, “Molecular beam epitaxial growth mechanism of ZnSe epilayers on (100) GaAs as determined by reflection high-energy electron diffraction, transmission electron microscopy and X-ray diffraction,” J. Cryst. Growth, vol. 138, no. 1-4, pp. 48-54, 1994. [156]X. B. Zhang, K. L. Ha, and S. K. Hark, “ Selenium-related luminescent centers in metalorganic chemical-vapor-phase deposition grown ZnSe epilayers on GaAs,“ Appl. Phys. Lett., vol. 79, pp. 1127-1129, 2001. [157]J. I. Goldstein, D. E. Newbury, P. E. chlin, D. C. Joy, C. Fiori, and E. Lifshin, in Scanning Electron Microscopy and X-ray Microanalysis, (Plenum, New York, 1992), p. 192. [158]D. Blavette, E. Cadel, A. Fraczkiewicz, and M. Menand, “Three-dimensional atomic-scale imaging of impurity segregation to line defects,” Science, vol. 286, pp. 2317-2319, 1999. [159]Jonathan P. K. Doye, and David J. Wales, “The effect of the range of the potential on the structures of clusters,” J. Chem. Phys., vol. 103, no. 10, pp. 4234-4249, 1995. [160]R. K. Watts, in Point Defects in Crystal, (Wily, New York, 1977), p. 252. [161]T. Ben David, T. Lereah, G. Deutscher, R. Kofman, and P. Cheyssac, “Solid-liquid transition in ultra-fine lead particles,” Philos. Mag. A, vol. 71, no. 5, pp. 1135-1143, 1995. [162]D. Martrou, J. Eymery, and N. Magnea, “Equilibrium shape of steps and islands on polar II-VI semiconductors surfaces,” Phys. Rev. Lett., vol. 83, no.12, pp. 2366-2369, 1999. [163]M. K. Ryu, S. H. Lee, M. S. Jang, G. N. Panin, and T. M. Kang, ” Postgrowth annealing effect on structural and optical properties of ZnO films grown on GaAs substrates by the radio frequency magnetron sputtering technique,” J. Appl. Phys., vol. 92, no. 1, pp. 154-158, 2002. [164]B. J. Jin, S. H. Bae, S. Y. Lee, and S. Im, “Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition,“ Mater. Sci. Eng. B, vol. 71, pp. 301-305, 2000. [165]M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater., vol 13, no.2, pp. 113-116, 2001. [166]M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, no. 5523, pp. 1897-1899, 2001. [167]W. I. Park, Y. H. Jun, S. W. Jung, and G. C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett., vol.82, no.6, pp. 964-966, 2003. [168]M. J. Zheng, L. D. Zhang, G. H. Li, and W. Z. Shen, “Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique,“ Chem. Phys. Lett. vol. 363, pp. 123-128, 2002. [169]W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,“ Appl. Phys. Lett., vol. 80, no. 22, pp. 4232-4234, 2002. [170]J. J. Wu and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,“ Adv. Mater. vol. 14, no. 2, pp. 215-218, 2002. [171]Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, and I. C. Chen, “Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films,” Adv. Funct. Mater., vol. 13, no. 10, pp. 811-824, 2003. [172]Y. K. Tseng, C. T. Chia, C. Y. Tsay, L. J. Lin, H. M. Cheng, C. Y. Kwo, and I. C. Chen, “Growth of epitaxial needlelike ZnO nanowires on GaN films,” J. Electrochem. Soc., vol. 152, no. 1, pp. G95-G98, 2005. [173]D. Li and H. Haneda, “Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition,” J. Photchem. Photobio A, vol. 155, no. 1-2, pp. 171-178, 2003. [174]J. L. Yang, S. J. An, W. I. Park, G. C. Yi, and W. Choi, “Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition,” Adv. Mater., vol. 16, no. 18, pp. 1661-1664, 2004. [175]J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, and C. Yan, “Control of ZnO morphology via a simple solution route,” Chem. Mater., vol. 14, no. 10, pp. 4172-4177, 2002. [176]D. C. Look and J. W. Hemsky, Phys. Rev. Lett., “Residual native shallow donor in ZnO,” vol. 82, no. 12, pp. 2552-2555, 1999. [177]W. S. Lau, P. W. Qian, N. P. Sandler, K. A. McKinley, and P. K. Chu, “Evidence that N2O is a stronger oxidizing agent than O2 for the post-deposition annealing of Ta2O5 on Si capacitors,” Jpn. J. Appl. Phys., vol 36, no. 2, pp. 661-666, 1997. [178]B. Mokili, Y. Charreire, R. Cortes, and D. Lincot, “Extended X-ray absorption fine structure studies of zinc hydroxo-sulphide thin films chemically deposited from aqueous solution,” Thin Solid Films, vol. 288, no. 1-2, pp. 21-28, 1996. [179]J. Chen, Z. Feng, P. Ying, M. Li, B. Han, and C. Li, ”The visible luminescent characteristics of ZnO supported on SiO2 powder,” Phys. Chem. Chem. Phys., vol. 6, no. 18, pp. 4473-4479, 2004. [180]Y. Yang, H. Yan, Z. Fu, B. Yang, and J. Zuo, ”Correlation between 577 cm–1 raman scattering and green emission in ZnO ordered nanostructures,” Appl. Phys. Lett., vol. 88, no. 19, pp. 191909-3, 2006. [181]Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, and I. C. Chen, “Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films,” Adv. Funct. Mater., vol. 13, no. 10, pp. 811-824, 2003. [182]X. M. Fan, J. S. Lian, Z. X. Guo, and H. J. Lu, “Microstructure and photoluminescence properties of ZnO thin films grown by PLD on Si (111) substrates,” Appl. Surf. Sci., vol. 239, pp. 176-181, 2005.
|