|
1. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003, 423, (6941), 705-714.
2. Krebs, B., The crystal structure of MoO 3, 2H 2 O: a metal aquoxide with both co-ordinated and hydrate water. Journal of the Chemical Society D: Chemical Communications 1970, (1), 50-51.
3. Bachmann, H.-G.; Ahmed, F. R.; Barnes, W. H., The crystal structure of vanadium pentoxide. Zeitschrift für Kristallographie-Crystalline Materials 1961, 115, (1-6), 110-131.
4. Delmas, C.; Fouassier, C.; Hagenmuller, P., Structural Classification and Properties of the Layered Oxides. Physica B & C 1980, 99, (1-4), 81-85.
5. Gasperin, M., Structure du triniobate (V) de potassium KNb3O8, un niobate lamellaire. Acta Crystallographica Section B 1982, 38, (7), 2024-2026.
6. Gasperin, M.; Le Bihan, M. T., Mecanisme d'hydratation des niobates alcalins lamellaires de formule A4Nb4O17 (A= K, Rb, Cs). Journal of solid state chemistry 1982, 43, (3), 346-353.
7. Andersson, S.; Wadsley, A., The crystal structure of Na2Ti3O7. Acta Crystallographica 1961, 14, (12), 1245-1249.
8. Dion, M.; Piffard, Y.; Tournoux, M., The tetratitanates M2Ti4O9 (M= Li, Na, K, Rb, Cs, Tl, Ag). Journal of Inorganic and Nuclear Chemistry 1978, 40, (5), 917-918.
9. Wadsley, A.; Mumme, W., The crystal structure of Na2Ti7O15, and an ordered intergrowth of Na2Ti6O13 andNa2Ti8O17. Acta Crystallographica Section B 1968, 24, (3), 392-396.
10. Watanabe, M.; Bando, Y.; Tsutsumi, M., A new member of sodium titanates, Na2Ti9O19. Journal of Solid State Chemistry 1979, 28, (3), 397-399.
11. Marchand, R.; Brohan, L.; Tournoux, M., TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Materials Research Bulletin 1980, 15, (8), 1129-1133.
12. Olazcuaga, R.; Reau, J.-M.; Devalette, M.; Le Flem, G.; Hagenmuller, P., Les phases Na4XO4 (X= Si, Ti, Cr, Mn, Co, Ge, Sn, Pb) et K4XO4 (X= Ti, Cr, Mn, Ge, Zr, Sn, Hf, Pb). Journal of Solid State Chemistry 1975, 13, (4), 275-282.
13. Werthmann, R.; Hoppe, R., Über Oxotitanate der Alkalimetalle. Zur Kenntnis von Na4Ti5O12. Zeitschrift für anorganische und allgemeine Chemie 1984, 519, (12), 117-133.
14. Wadsley, A., Crystal chemistry of non‐stoichiometric pentavalent vandadium oxides: crystal structure of Li1+xV3O8. Acta Crystallographica 1957, 10, (4), 261-267.
15. Okada, K.; Marumo, F.; Iwai, S., The crystal structure of Cs6W11O36. Acta Crystallographica Section B 1978, 34, (1), 50-54.
16. Delmas, C.; Fouassier, C., Les phases KxMnO2 (x≤ 1). Zeitschrift für anorganische und allgemeine Chemie 1976, 420, (2), 184-192.
17. Uppuluri, R.; Sen Gupta, A.; Rosas, A. S.; Mallouk, T. E., Soft chemistry of ion-exchangeable layered metal oxides. Chemical Society Reviews 2018, 47, (7), 2401-2430.
18. Feitknecht, W.; Gerber, M., Zur Kenntnis der Doppelhydroxyde und basischen Doppelsalze III. Über Magnesium‐Aluminiumdoppelhydroxyd. Helvetica Chimica Acta 1942, 25, (1), 131-137.
19. Klevtsova, R.; Klevtsov, P., X-ray diffraction study of a new modification of yttrium hydroxychloride Y(OH)2Cl. Journal of Structural Chemistry 1967, 7, (4), 524-527.
20. Geng, F.; Matsushita, Y.; Ma, R.; Xin, H.; Tanaka, M.; Izumi, F.; Iyi, N.; Sasaki, T., General Synthesis and Structural Evolution of a Layered Family of Ln8(OH)20Cl4·nH2O (Ln= Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y). Journal of the American Chemical Society 2008, 130, (48), 16344-16350.
21. Hansen, W. C.; Brownmiller, L.; Bogue, R., STUDIES ON THE SYSTEM CALCIUM OXIDE-ALUMINA-FERRIC OXIDE1. Journal of the American Chemical Society 1928, 50, (2), 396-406.
22. Choy, J.-H.; Kim, J.-Y.; Kim, S.-J.; Sohn, J.-S.; Han, O. H., New Dion− Jacobson-Type Layered Perovskite Oxyfluorides, ASrNb2O6F (A= Li, Na, and Rb). Chemistry of materials 2001, 13, (3), 906-912.
23. Ida, S.; Okamoto, Y.; Matsuka, M.; Hagiwara, H.; Ishihara, T., Preparation of Tantalum-Based Oxynitride Nanosheets by Exfoliation of a Layered Oxynitride, CsCa2Ta3O10-xNy, and Their Photocatalytic Activity. Journal of the American Chemical Society 2012, 134, (38), 15773-15782.
24. Denis Romero, F.; Leach, A.; Möller, J. S.; Foronda, F.; Blundell, S. J.; Hayward, M. A., Strontium Vanadium Oxide–Hydrides:“Square‐Planar” Two‐Electron Phases. Angewandte Chemie International Edition 2014, 53, (29), 7556-7559.
25. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Formation of titanium oxide nanotube. Langmuir 1998, 14, (12), 3160-3163.
26. Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C., Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Advanced Materials 2006, 18, (21), 2807-2824.
27. Bavykin, D. V.; Walsh, F. C., Elongated Titanate Nanostructures and Their Applications. European Journal of Inorganic Chemistry 2009, (8), 977-997.
28. Bavykin, D. V.; Passoni, L.; Walsh, F. C., Hierarchical tube-in-tube structures prepared by electrophoretic deposition of nanostructured titanates into a TiO2 nanotube array. Chemical Communications 2013, 49, (62), 7007-7009.
29. Du, G. H.; Chen, Q.; Che, R. C.; Yuan, Z. Y.; Peng, L. M., Preparation and structure analysis of titanium oxide nanotubes. Applied Physics Letters 2001, 79, (22), 3702-3704.
30. Yang, J. J.; Jin, Z. S.; Wang, X. D.; Li, W.; Zhang, J. W.; Zhang, S. L.; Guo, X. Y.; Zhang, Z. J., Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Transactions 2003, (20), 3898-3901.
31. Nakahira, A.; Kato, W.; Tamai, M.; Isshiki, T.; Nishio, K.; Aritani, H., Synthesis of nanotube from a layered H2Ti4O9 center dot H2O in a hydrothermal treatment using various titania sources. Journal of Materials Science 2004, 39, (13), 4239-4245.
32. Bavykin, D. V.; Cressey, B. A.; Light, M. E.; Walsh, F. C., An aqueous, alkaline route to titanate nanotubes under atmospheric pressure conditions. Nanotechnology 2008, 19, (27).
33. Bavykin, D. V.; Kulak, A. N.; Walsh, F. C., Metastable Nature of Titanate Nanotubes in an Alkaline Environment. Crystal Growth & Design 2010, 10, (10), 4421-4427.
34. Sasaki, T.; Komatsu, Y.; Fujiki, Y., A new layered hydrous titanium dioxide HxTi2–x/4O4· H2O. Journal of the Chemical Society, Chemical Communications 1991, (12), 817-818.
35. Sasaki, T.; Watanabe, M.; Michiue, Y.; Komatsu, Y.; Izumi, F.; Takenouchi, S., Preparation and Acid-Base Properties of a Protonated Titanate with the Lepidocrocite-Like Layer Structure. Chemistry of Materials 1995, 7, (5), 1001-1007.
36. Yang, J.; Li, D.; Wang, X.; Yang, X. J.; Lu, L., Study on the synthesis and ion-exchange properties of layered titanate Na2Ti3O7 powders with different sizes. Journal of Materials Science 2003, 38, (13), 2907-2911.
37. Tsai, C. C.; Teng, H., Nanotube formation from a sodium titanate powder via low-temperature acid treatment. Langmuir 2008, 24, (7), 3434-3438.
38. Shen, L. M.; Bao, N. Z.; Zheng, Y. Q.; Gupta, A.; An, T. C.; Yanagisawa, K., Hydrothermal splitting of titanate fibers to single-crystalline TiO2 nanostructures with controllable crystalline phase, morphology, microstructure, and photocatalytic activity. Journal of Physical Chemistry C 2008, 112, (24), 8809-8818.
39. Zhang, S.; Peng, L. M.; Chen, Q.; Du, G. H.; Dawson, G.; Zhou, W. Z., Formation mechanism of H2Ti3O7 nanotubes. Physical Review Letters 2003, 91, (25).
40. Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.; Walsh, F. C., The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry 2004, 14, (22), 3370-3377.
41. Wei, M. D.; Konishi, Y.; Arakawa, H., Synthesis and characterization of nanosheet-shaped titanium dioxide. Journal of Materials Science 2007, 42, (2), 529-533.
42. Peng, C. W.; Ke, T. Y.; Brohan, L.; Richard-Plouet, M.; Huang, J. C.; Puzenat, E.; Chiu, H. T.; Lee, C. Y., (101)-exposed anatase TiO2 nanosheets. Chemistry of Materials 2008, 20, (7), 2426-2428.
43. Wang, C. H.; Zhang, X. T.; Zhang, Y. L.; Jia, Y.; Yang, J. K.; Sun, P. P.; Liu, Y. C., Hydrothermal Growth of Layered Titanate Nanosheet Arrays on Titanium Foil and Their Topotactic Transformation to Heterostructured TiO2 Photocatalysts. Journal of Physical Chemistry C 2011, 115, (45), 22276-22285.
44. Korosi, L.; Papp, S.; Csapo, E.; Meynen, V.; Cool, P.; Dekany, I., A short solid-state synthesis leading to titanate compounds with porous structure and nanosheet morphology. Microporous and Mesoporous Materials 2012, 147, (1), 53-58.
45. Li, N.; Zhang, L. D.; Chen, Y. Z.; Fang, M.; Zhang, J. X.; Wang, H. M., Highly Efficient, Irreversible and Selective Ion Exchange Property of Layered Titanate Nanostructures. Advanced Functional Materials 2012, 22, (4), 835-841.
46. Takezawa, Y.; Imai, H., Bottom-up synthesis of titanate nanosheets with hierarchical structures and a high specific surface area. Small 2006, 2, (3), 390-393.
47. Takezawa, Y.; Imai, H., Structural control on crystal growth of titanate in aqueous system: Selective production of nanostructures of layered titanate and anatase-type titania. Journal of Crystal Growth 2007, 308, (1), 117-121.
48. Jitputti, J.; Rattanavoravipa, T.; Chuangchote, S.; Pavasupree, S.; Suzuki, Y.; Yoshikawa, S., Low temperature hydrothermal synthesis of monodispersed flower-like titanate nanosheets. Catalysis Communications 2009, 10, (4), 378-382.
49. Chen, D. H.; Huang, F. Z.; Cao, L.; Cheng, Y. B.; Caruso, R. A., Spiky Mesoporous Anatase Titania Beads: A Metastable Ammonium Titanate-Mediated Synthesis. Chemistry-a European Journal 2012, 18, (43), 13762-13769.
50. Zhao, B.; Chen, F.; Gu, X. N.; Zhang, J. L., Organic-Stabilizer-Free Synthesis of Layered Protonic Titanate Nanosheets. Chemistry-an Asian Journal 2010, 5, (7), 1546-1549.
51. Gao, Y. P.; Fang, P. F.; Liu, Z.; Chen, F. T.; Liu, Y.; Wang, D. H.; Dai, Y. Q., A Facile One-Pot Synthesis of Layered Protonated Titanate Nanosheets Loaded with Silver Nanoparticles with Enhanced Visible-Light Photocatalytic Performance. Chemistry-an Asian Journal 2013, 8, (1), 204-211.
52. Xie, S. F.; Zheng, B. J.; Kuang, Q.; Wang, X.; Xie, Z. X.; Zheng, L. S., Synthesis of layered protonated titanate hierarchical microspheres with extremely large surface area for selective adsorption of organic dyes. Crystengcomm 2012, 14, (22), 7715-7720.
53. Wu, H. B.; Lou, X. W.; Hng, H. H., Synthesis of Uniform Layered Protonated Titanate Hierarchical Spheres and Their Transformation to Anatase TiO2 for Lithium-Ion Batteries. Chemistry-a European Journal 2012, 18, (7), 2094-2099.
54. Nguyen-Phan, T. D.; Oh, E. S.; Chhowalla, M.; Asefa, T.; Shin, E. W., Hierarchical macrochanneled layered titanates with "house-of-cards"-type titanate nanosheets and their superior photocatalytic activity. Journal of Materials Chemistry A 2013, 1, (26), 7690-7701.
55. Sutradhar, N.; Sinhamahapatra, A.; Pahari, S. K.; Bajaj, H. C.; Panda, A. B., Room temperature synthesis of protonated layered titanate sheets using peroxo titanium carbonate complex solution. Chemical Communications 2011, 47, (27), 7731-7733.
56. Sutradhar, N.; Pahari, S. K.; Jayachandran, M.; Stephan, A. M.; Nair, J. R.; Subramanian, B.; Bajaj, H. C.; Mody, H. M.; Panda, A. B., Organic free low temperature direct synthesis of hierarchical protonated layered titanates/anatase TiO2 hollow spheres and their task-specific applications. Journal of Materials Chemistry A 2013, 1, (32), 9122-9131.
57. Zhao, B.; Chen, F.; Jiao, Y. C.; Zhang, J. L., Phase transition and morphological evolution of titania/titanate nanomaterials under alkalescent hydrothermal treatment. Journal of Materials Chemistry 2010, 20, (37), 7990-7997.
58. Kao, L. H.; Hsu, T. C.; Lu, H. Y., Sol-gel synthesis and morphological control of nanocrystalline TiO2 via urea treatment. Journal of Colloid and Interface Science 2007, 316, (1), 160-167.
59. Livage, J.; Henry, M.; Sanchez, C., Sol-Gel Chemistry of Transition-Metal Oxides. Progress in Solid State Chemistry 1988, 18, (4), 259-341.
60. Sing, K. S., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry 1985, 57, (4), 603-619.
61. Leofanti, G.; Padovan, M.; Tozzola, G.; Venturelli, B., Surface area and pore texture of catalysts. Catalysis Today 1998, 41, (1-3), 207-219.
62. Tang, Y. X.; Lai, Y. K.; Gong, D. G.; Goh, K. H.; Lim, T. T.; Dong, Z. L.; Chen, Z., Ultrafast Synthesis of Layered Titanate Microspherulite Particles by Electrochemical Spark Discharge Spallation. Chemistry-a European Journal 2010, 16, (26), 7704-7708.
63. Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A., Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. Journal of Hazardous Materials 2009, 170, (2-3), 969-977.
64. Xiong, L.; Chen, C.; Chen, Q.; Ni, J. R., Adsorption of Pb(II) and Cd(II) from aqueous solutions using titanate nanotubes prepared via hydrothermal method. Journal of Hazardous Materials 2011, 189, (3), 741-748.
65. Ho, Y. S.; McKay, G., Sorption of dye from aqueous solution by peat. Chemical Engineering Journal 1998, 70, (2), 115-124.
66. Langmuir, I., The constitution and fundamental properties of solids and liquids Part I Solids. Journal of the American Chemical Society 1916, 38, 2221-2295.
67. Foo, K. Y.; Hameed, B. H., Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal 2010, 156, (1), 2-10.
68. Xiong, L.; Yang, Y.; Mai, J. X.; Sun, W. L.; Zhang, C. Y.; Wei, D. P.; Chen, Q.; Ni, J. R., Adsorption behavior of methylene blue onto titanate nanotubes. Chemical Engineering Journal 2010, 156, (2), 313-320.
69. Tang, Y. X.; Gong, D. G.; Lai, Y. K.; Shen, Y. Q.; Zhang, Y. Y.; Huang, Y. Z.; Tao, J.; Lin, C. J.; Dong, Z. L.; Chen, Z., Hierarchical layered titanate microspherulite: formation by electrochemical spark discharge spallation and application in aqueous pollutant treatment. Journal of Materials Chemistry 2010, 20, (45), 10169-10178.
70. Bavykin, D. V.; Redmond, K. E.; Nias, B. P.; Kulak, A. N.; Walsh, F. C., The Effect of Ionic Charge on the Adsorption of Organic Dyes onto Titanate Nanotubes. Australian Journal of Chemistry 2010, 63, (2), 270-275.
71. Huang, J. Q.; Cao, Y. G.; Liu, Z. G.; Deng, Z. H.; Wang, W. C., Application of titanate nanoflowers for dye removal: A comparative study with titanate nanotubes and nanowires. Chemical Engineering Journal 2012, 191, 38-44.
72. Feng, M.; You, W.; Wu, Z. S.; Chen, Q. D.; Zhan, H. B., Mildly Alkaline Preparation and Methylene Blue Adsorption Capacity of Hierarchical Flower-like Sodium Titanate. Acs Applied Materials & Interfaces 2013, 5, (23), 12654-12662.
73. Yang, D. J.; Zheng, Z. F.; Zhu, H. Y.; Liu, H. W.; Gao, X. P., Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Advanced Materials 2008, 20, (14), 2777-+.
74. Liu, Y.; Yang, Y., Recent progress of TiO2-based anodes for Li ion batteries. Journal of Nanomaterials 2016, 2016, 2. 75. Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Zaccaria, R. P.; Capiglia, C., Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources 2014, 257, 421-443.
76. Yang, S.; Feng, X.; Zhi, L.; Cao, Q.; Maier, J.; Müllen, K., Nanographene‐constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Advanced Materials 2010, 22, (7), 838-842.
77. Xia, L.; Xia, Y.; Liu, Z., Thiophene derivatives as novel functional additives for high-voltage LiCoO2 operations in lithium ion batteries. Electrochimica Acta 2015, 151, 429-436.
78. Muto, S.; Tatsumi, K.; Kojima, Y.; Oka, H.; Kondo, H.; Horibuchi, K.; Ukyo, Y., Effect of Mg-doping on the degradation of LiNiO2-based cathode materials by combined spectroscopic methods. Journal of Power Sources 2012, 205, 449-455.
79. Ji, H.; Yang, G.; Miao, X.; Hong, A., Efficient microwave hydrothermal synthesis of nanocrystalline orthorhombic LiMnO2 cathodes for lithium batteries. Electrochimica Acta 2010, 55, (9), 3392-3397.
80. Yin, X.; Huang, K.; Liu, S.; Wang, H.; Wang, H., Preparation and characterization of Na-doped LiFePO4/C composites as cathode materials for lithium-ion batteries. Journal of Power Sources 2010, 195, (13), 4308-4312.
81. Doi, T.; Yatomi, S.; Kida, T.; Okada, S.; Yamaki, J.-i., Liquid-phase synthesis of uniformly nanosized LiMnPO4 particles and their electrochemical properties for lithium-ion batteries. Crystal Growth & Design 2009, 9, (12), 4990-4992.
82. Bai, L.; Fang, F.; Zhao, Y.; Liu, Y.; Li, J.; Huang, G.; Sun, H., A sandwich structure of mesoporous anatase TiO2 sheets and reduced graphene oxide and its application as lithium-ion battery electrodes. Rsc Advances 2014, 4, (81), 43039-43046.
83. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials today 2015, 18, (5), 252-264.
84. Zheng, X.; Li, J., A review of research on hematite as anode material for lithium-ion batteries. Ionics 2014, 20, (12), 1651-1663.
85. Babu, V. J.; Vempati, S.; Uyar, T.; Ramakrishna, S., Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Physical Chemistry Chemical Physics 2015, 17, (5), 2960-2986.
86. Marom, R.; Amalraj, S. F.; Leifer, N.; Jacob, D.; Aurbach, D., A review of advanced and practical lithium battery materials. Journal of Materials Chemistry 2011, 21, (27), 9938-9954.
87. Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W., Lithium−air battery: promise and challenges. The Journal of Physical Chemistry Letters 2010, 1, (14), 2193-2203.
88. Scrosati, B.; Garche, J., Lithium batteries: Status, prospects and future. Journal of Power Sources 2010, 195, (9), 2419-2430.
89. Persson, K.; Sethuraman, V. A.; Hardwick, L. J.; Hinuma, Y.; Meng, Y. S.; Van Der Ven, A.; Srinivasan, V.; Kostecki, R.; Ceder, G., Lithium diffusion in graphitic carbon. The journal of physical chemistry letters 2010, 1, (8), 1176-1180.
90. Kaskhedikar, N. A.; Maier, J., Lithium storage in carbon nanostructures. Advanced Materials 2009, 21, (25‐26), 2664-2680.
91. Yoshio, M.; Wang, H.; Fukuda, K.; Hara, Y.; Adachi, Y., Effect of carbon coating on electrochemical performance of treated natural graphite as lithium‐ion battery anode material. Journal of The Electrochemical Society 2000, 147, (4), 1245-1250.
92. Yoshio, M.; Wang, H.; Fukuda, K., Spherical Carbon‐Coated Natural Graphite as a Lithium‐Ion Battery‐Anode Material. Angewandte Chemie 2003, 115, (35), 4335-4338.
93. Park, K.-S.; Benayad, A.; Kang, D.-J.; Doo, S.-G., Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. Journal of the American Chemical Society 2008, 130, (45), 14930-14931.
94. Yoshio, M.; Wang, H.; Fukuda, K.; Umeno, T.; Abe, T.; Ogumi, Z., Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere. Journal of Materials Chemistry 2004, 14, (11), 1754-1758.
95. Ren, H.; Yu, R.; Wang, J.; Jin, Q.; Yang, M.; Mao, D.; Kisailus, D.; Zhao, H.; Wang, D., Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano letters 2014, 14, (11), 6679-6684.
96. Liao, J. Y.; Manthiram, A., Mesoporous TiO2‐Sn/C Core‐Shell Nanowire Arrays as High‐Performance 3D Anodes for Li‐Ion Batteries. Advanced Energy Materials 2014, 4, (14), 1400403.
97. Ferg, E.; Gummow, R.; De Kock, A.; Thackeray, M., Spinel anodes for lithium‐ion batteries. Journal of the Electrochemical Society 1994, 141, (11), L147-L150.
98. Deschanvres, A.; Raveau, B.; Sekkal, Z., Mise en evidence et etude cristallographique d'une nouvelle solution solide de type spinelle Li1+xTi2−xO4 0⩽ x⩽ 0, 333. Materials Research Bulletin 1971, 6, (8), 699-704.
99. Ronci, F.; Reale, P.; Scrosati, B.; Panero, S.; Rossi Albertini, V.; Perfetti, P.; Di Michiel, M.; Merino, J., High-resolution in-situ structural measurements of the Li4/3Ti5/3O4 “zero-strain” insertion material. The journal of physical chemistry B 2002, 106, (12), 3082-3086.
100. Yang, Z.; Du, G.; Meng, Q.; Guo, Z.; Yu, X.; Chen, Z.; Guo, T.; Zeng, R., Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance. Journal of Materials Chemistry 2012, 22, (12), 5848-5854.
101. Abayev, I.; Zaban, A.; Fabregat‐Santiago, F.; Bisquert, J., Electronic conductivity in nanostructured TiO2 films permeated with electrolyte. physica status solidi (a) 2003, 196, (1), R4-R6.
102. Sushko, M. L.; Rosso, K. M.; Liu, J., Mechanism of Li+/electron conductivity in rutile and anatase TiO2 nanoparticles. The Journal of Physical Chemistry C 2010, 114, (47), 20277-20283.
103. Fehse, M.; Ventosa, E., Is TiO2(B) the Future of Titanium‐Based Battery Materials? ChemPlusChem 2015, 80, (5), 785-795.
104. Wagemaker, M.; van de Krol, R.; Kentgens, A. P.; Van Well, A. A.; Mulder, F. M., Two phase morphology limits lithium diffusion in TiO2 (anatase): A 7Li MAS NMR study. Journal of the American Chemical Society 2001, 123, (46), 11454-11461.
105. Yan, X.; Li, Y.; Li, M.; Jin, Y.; Du, F.; Chen, G.; Wei, Y., Ultrafast lithium storage in TiO 2–bronze nanowires/N-doped graphene nanocomposites. Journal of Materials Chemistry A 2015, 3, (8), 4180-4187.
106. Zhang, Y. Y.; Tang, Y. X.; Li, W. L.; Chen, X. D., Nanostructured TiO2-Based Anode Materials for High-Performance Rechargeable Lithium-Ion Batteries. Chemnanomat 2016, 2, (8), 764-775.
107. Zhang, Q.; Uchaker, E.; Candelaria, S. L.; Cao, G., Nanomaterials for energy conversion and storage. Chemical Society Reviews 2013, 42, (7), 3127-3171.
108. Malgras, V.; Ji, Q.; Kamachi, Y.; Mori, T.; Shieh, F.-K.; Wu, K. C.-W.; Ariga, K.; Yamauchi, Y., Templated synthesis for nanoarchitectured porous materials. Bulletin of the Chemical Society of Japan 2015, 88, (9), 1171-1200.
109. Tang, Y.; Wee, P.; Lai, Y.; Wang, X.; Gong, D.; Kanhere, P. D.; Lim, T.-T.; Dong, Z.; Chen, Z., Hierarchical TiO2 nanoflakes and nanoparticles hybrid structure for improved photocatalytic activity. The Journal of Physical Chemistry C 2012, 116, (4), 2772-2780.
110. Rui, X.; Tang, Y.; Malyi, O. I.; Gusak, A.; Zhang, Y.; Niu, Z.; Tan, H. T.; Persson, C.; Chen, X.; Chen, Z., Ambient dissolution–recrystallization towards large-scale preparation of V2O5 nanobelts for high-energy battery applications. Nano Energy 2016, 22, 583-593.
111. Tang, Y.; Zhang, Y.; Li, W.; Ma, B.; Chen, X., Rational material design for ultrafast rechargeable lithium-ion batteries. Chemical Society Reviews 2015, 44, (17), 5926-5940.
112. Ren, Y.; Liu, Z.; Pourpoint, F.; Armstrong, A. R.; Grey, C. P.; Bruce, P. G., Nanoparticulate TiO2(B): An Anode for Lithium-Ion Batteries. Angewandte Chemie-International Edition 2012, 51, (9), 2164-2167.
113. Tang, Y. X.; Zhang, Y. Y.; Deng, J. Y.; Qi, D. P.; Leow, W. R.; Wei, J. Q.; Yin, S. Y.; Dong, Z. L.; Yazami, R.; Chen, Z.; Chen, X. D., Unravelling the Correlation between the Aspect Ratio of Nanotubular Structures and Their Electrochemical Performance To Achieve High-Rate and Long-Life Lithium-Ion Batteries. Angewandte Chemie-International Edition 2014, 53, (49), 13488-13492.
114. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q., Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, (7195), 638.
115. Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D.; Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X. W., Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. Journal of the American Chemical Society 2010, 132, (17), 6124-6130.
116. Sun, C. H.; Yang, X. H.; Chen, J. S.; Li, Z.; Lou, X. W.; Li, C.; Smith, S. C.; Lu, G. Q. M.; Yang, H. G., Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. Chemical Communications 2010, 46, (33), 6129-6131.
117. Sun, C. H.; Yang, X. H.; Chen, J. S.; Li, Z.; Lou, X. W.; Li, C. Z.; Smith, S. C.; Lu, G. Q.; Yang, H. G., Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. Chemical Communications 2010, 46, (33), 6129-6131.
118. Cho, J. S.; Hong, Y. J.; Kang, Y. C., Electrochemical properties of fiber‐in‐tube‐and filled‐structured TiO2 nanofiber anode materials for lithium‐ion batteries. Chemistry–A European Journal 2015, 21, (31), 11082-11087.
119. Liao, J. Y.; Higgins, D.; Lui, G.; Chabot, V.; Xiao, X. C.; Chen, Z. W., Multifunctional TiO2-C/MnO2 Core-Double-Shell Nanowire Arrays as High-Performance 3D Electrodes for Lithium Ion Batteries. Nano Letters 2013, 13, (11), 5467-5473.
120. Balogun, M. S.; Qiu, W.; Luo, Y.; Huang, Y.; Yang, H.; Li, M.; Yu, M.; Liang, C.; Fang, P.; Liu, P., Improving the Lithium‐Storage Properties of Self‐Grown Nickel Oxide: A Back‐Up from TiO2 Nanoparticles. ChemElectroChem 2015, 2, (9), 1243-1248.
121. Park, K.-S.; Kang, J.-G.; Choi, Y.-J.; Lee, S.; Kim, D.-W.; Park, J.-G., Long-term, high-rate lithium storage capabilities of TiO2 nanostructured electrodes using 3D self-supported indium tin oxide conducting nanowire arrays. Energy & Environmental Science 2011, 4, (5), 1796-1801.
122. Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, (6217), 1246501.
123. Shi, Y.; Peng, L.; Ding, Y.; Zhao, Y.; Yu, G., Nanostructured conductive polymers for advanced energy storage. Chemical Society Reviews 2015, 44, (19), 6684-6696.
124. Park, K. S.; Kang, J. G.; Choi, Y. J.; Lee, S.; Kim, D. W.; Park, J. G., Long-term, high-rate lithium storage capabilities of TiO2 nanostructured electrodes using 3D self-supported indium tin oxide conducting nanowire arrays. Energy & Environmental Science 2011, 4, (5), 1796-1801.
125. Yang, S.; Feng, X.; Müllen, K., Sandwich‐like, graphene‐based titania nanosheets with high surface area for fast lithium storage. Advanced Materials 2011, 23, (31), 3575-3579.
126. Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L. L.; Cheng, H. M., Battery Performance and Photocatalytic Activity of Mesoporous Anatase TiO2 Nanospheres/Graphene Composites by Template-Free Self-Assembly. Advanced Functional Materials 2011, 21, (9), 1717-1722.
127. Liao, J.-Y.; Xiao, X.; Higgins, D.; Lui, G.; Chen, Z., Self-supported single crystalline H2Ti8O17 nanoarrays as integrated three-dimensional anodes for lithium-ion microbatteries. ACS applied materials & interfaces 2013, 6, (1), 568-574.
128. Xiang, G.; Li, T.; Zhuang, J.; Wang, X., Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties. Chemical Communications 2010, 46, (36), 6801-6803.
129. Liao, J.-Y.; Lei, B.-X.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y., Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells. Energy & Environmental Science 2012, 5, (2), 5750-5757.
130. Que, L.; Wang, Z.; Yu, F.; Gu, D., 3D ultralong nanowire arrays with a tailored hydrogen titanate phase as binder-free anodes for Li-ion capacitors. Journal of Materials Chemistry A 2016, 4, (22), 8716-8723.
131. Liu, H.; Bi, Z.; Sun, X. G.; Unocic, R. R.; Paranthaman, M. P.; Dai, S.; Brown, G. M., Mesoporous TiO2–B microspheres with superior rate performance for lithium ion batteries. Advanced Materials 2011, 23, (30), 3450-3454.
132. Cui, L.-F.; Yang, Y.; Hsu, C.-M.; Cui, Y., Carbon− silicon core− shell nanowires as high capacity electrode for lithium ion batteries. Nano letters 2009, 9, (9), 3370-3374.
|