跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 06:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林坤儀
研究生(外文):Lin, Kunyi
論文名稱:以化學置換法製備碳奈米螺旋線圈/不銹鋼燈絲陰極及場發射燈具製作
論文名稱(外文):Preparation Of Carbon Nanocoil/Stainless Steel Wire Cathodes Using Chemical Displaced Catalysts And Fabrication Of Field Emission Lamps
指導教授:劉益銘
指導教授(外文):Liu, Yihming
口試委員:葛明德蒲念文羅吉宗
口試委員(外文):Ger, MingderPu, NenwenLo, Jyitsong
口試日期:2012-05-15
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:76
中文關鍵詞:化學置換法碳奈米螺旋線圈場發射燈具
外文關鍵詞:carbon nanocoilfield emission bulbchemical displacement
相關次數:
  • 被引用被引用:4
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以「熱裂解化學氣相沉積法(TCVD)」為主要製程,進行碳奈米螺旋線圈及奈米碳材的成長,並以其作為場發射燈泡之陰極燈絲。研究中藉由製程參數之調整,使陰極燈絲之性能最佳化,最後並封裝成一完整之場發射燈泡。研究內容主要分為三部分,首先利用化學均溫置換法於不銹鋼絲上置換奈米級貴金屬觸媒來成長碳奈米螺旋線圈,探討置換濃度與時間等參數對於碳奈米螺旋線圈成長之影響,並藉由參數調整來得到最佳置換條件。
第二部分則針對以TCVD成長碳奈米螺旋線圈及奈米碳材之製程部分,調整成長時間及成長溫度等參數來探討各參數對於碳奈米螺旋線圈形貌之影響,並分析以其所製作場發射陰極燈絲之場發射特性。第三部分則將上述最佳製程參數所成長之CNC陰極燈絲進行構型變化,並探討其對發光均勻度、場發射特性等之影響。最後將其實際封裝成FEL燈泡,並量測其光通量及發光效率,以了解未來場發射燈具之應用潛力。
研究結果顯示,在基材之置換過程中,貴金屬濃度為50 ppm及析鍍90秒為最佳置換條件。而在TCVD製程中,在800℃下成長10 min可獲得最佳場發射特性之CNC陰極燈絲。最後將長度6 cm及直徑1 mm之CNC陰極燈絲封裝為FEL燈泡後,在10 kV外加電壓下,可得到光通量229 lm、發光效率28 lm/W及演色性(Ra)大於 85之燈具。

關鍵詞:碳奈米螺旋線圈、化學置換法、場發射燈具

The synthesis of carbon nanocoils (CNCs) and carbon nano-products using thermal chemical vapor deposition (TCVD) to fabricate cathode wires for field emission bulbs (FEBs) is studied in this thesis. In this work, the performance of FE cathode wires was optimized via adjustment of the process parameters. These FE cathode wires were then used to assemble complete FEBs for evaluation. The results of this thesis contain three main sections. Firstly, the CNCs growth on stainless steel wires with nano-catalysts prepared with different chemical displacement parameters such as the concentration of the displacement time were compared. These displacement parameters were optimized in this section.
In the second part, the synthesis of carbon nanocoils and carbon nano-products using thermal chemical vapor deposition with different growth time and growth temperature was investigated. The effect of growth time and temperature on the CNC morphology was studied. The field emission characteristics of the FE wire cathodes fabricated with these CNCs were also evaluated.
In the last section, the influence of configuration on the lighting uniformity and FE properties was investigated with the wire cathodes fabricated with the aforementioned optimized process parameters. The wire cathode with optimized FE characteristics was sealed with phosphor anode to assemble a FEB. The luminous flux and lighting efficiency was measured to realize the application potential of the FEB.
The results show that, in the displacement process, the solution concentration of 50 ppm and displacement time of 90 sec is the optimal displacement condition. In the CNC synthesis process, the CNC wire cathodes with the best FE characteristics can be fabricated with the TCVD temperature of 800℃ and growth time of 10 min. The optimal configuration of the wire cathode is the length of 6 cm and diameter of 1 mm. When the optimal wire cathode was sealed with phosphor anode to assemble a FEB, the FEB achieved the luminous flux of 280 lm, the luminous efficiency of 28 lm/W and Ra value higher than 85 under the applied voltage of 10 kV.

Key words: carbon nanocoil, chemical displacement, field emission bulb

誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
表目錄 ix
圖目錄 x
1.緒論 1
1.1 前言 1
1.2 研究動機 4
2. 文獻回顧及發展簡介 5
2.1 場發射燈源之簡介 5
2.1.1 場發射光源燈具發展 8
2.1.2場發射發光元件的設計與應用 10
2.2 場發射電子機制及原理 14
2.2.1 電子發射種類 14
2.2.2 場發射機制 15
2.3 碳奈米螺旋線圈之發展簡介 17
2.3.1 碳奈米螺旋線圈之成長機制 20
2.3.2 碳奈米螺旋線圏之性質及應用 24
2.3.3 碳奈米螺旋線圈的製備方法 25
2.4 觸媒製備方法 27
2.4.1 物理法 27
2.4.2 化學法 27
3. 研究方法與流程 30
3.1 研究流程 30
3.2 研究方法 30
3.2.1 基材製備 31
3.2.2 觸媒製備 31
3.2.3 化學氣相沉積法合成碳奈米螺旋線圈 31
3.3 研究設備 32
3.3.1 化學置換裝置 32
3.3.2 化學氣相沉積設備 33
3.3.3 真空場發射測試儀 34
3.4檢測分析儀器 35
3.5 實驗藥品與儀器 38
3.5.1 實驗藥品 38
3.5.2 實驗儀器 38
4. 結果與討論 39
4.1 置換參數對CNC陰極燈絲及其場發射特性之影響 39
4.1.1 鍍液濃度對CNC陰極燈絲及其場發射特性之影響 39
4.1.2 置換時間對CNC陰極燈絲及其場發射特性之影響 42
4.1.3 小結 46
4.2 TCVD參數對CNC陰極燈絲及其場發射特性之影響 46
4.2.1 成長時間對CNC陰極燈絲及其場發射特性之影響 46
4.2.2 成長溫度對CNC陰極燈絲及其場發射特性之影響 53
4.2.3 小結 59
4.3 CNC陰極燈絲之構型對其場發射特性之影響及場發射燈具製作 60
4.3.1 CNC陰極燈絲之長度對其場發射特性之影響 60
4.3.2 CNC陰極燈絲之直徑對其場發射特性之影響 62
4.3.3 場發射燈具製作與穩定性測試 65
5. 結論 68
6.未來展望 69
參考文獻 70

[1]鍾坤儒,“奈米碳材製備場發射燈源製程之研究”,碩士學位論文,國防大學中正理工學院應用化學研究所,桃園,第9頁,2010。
[2]http://www.ledinside.com.tw/node/9050
[3]洪敏軒,“應用於奈米碳管場發射背光源之脈衝電源產生器設計”,碩士論文,大同大學電機工程學系,台北,2009。
[4]楊宗翰,“場發射光元-LED外的環保燈源”,光連雙月刊,第八十一期,第39頁,2009。
[5]Huang, J. X., Chen, Jun., Deng, S. Z., She, J. C., and Xu, N. S. , “Field-emission fluorescent lamp using carbon nanotubes on a wire-type cold cathode and a reflecting anode,” Journal of Vacuum Science and Technology B, Vol. 26, No. 5, pp. 1700-1704, 2008
[6]Bonard, J. M., Stockli, T., Noury, O., and Chatelain, A., “Field emission from cylindrical carbon nanotube cathodes:Possibilities for luminescent tubes,” Applied physics letters, Vol. 78, No. 18, pp. 2775-2777, 2001.
[7]Fu, W., Liu, P., Tang, J., Liu, L., and Fan, S., “Spherical field emission cathode based on carbon nanotube paste and its application in luminescent bulbs,” Journal of Vacuum Science and Technology B, Vol. 26, No. 4, pp. 1404-1406, 2008.
[8]Wei, Y., Xiao, L., Zhu, F., Liu, L., Tang, J., Liu, P., and Fan, S. S., “Cold Linear Cathodes with Carbon Nanotube Emitters and Their Application in Luminescent Tubes,” Nanotechnology, Vol. 18, pp. 325702-325707, 2008.
[9]李旻虹,“碳奈米螺旋線圈/不銹鋼網陰極場發射燈具之製作”,碩士學位論文,國防大學中正理工學院應用化學研究所,桃園,第7頁,2011。
[10]高聖捷,“以濕式法製作場發射燈源”,碩士學位論文,國防大學中正理工學院材料科學碩士班,桃園,第18頁,2010。
[11]美國專利, “Field emission lamp , ” US20060022576A1 ”, 2006。
[12]美國專利, “Field emission lamp , ” US20110043097A1 ”, 2011。
[13]美國專利, “Field emission lamp , ” US20060017370A1 ”, 2006。
[14]美國專利, “Field emission lamp , ” US20080136312A1 ”, 2008。
[15]美國專利, “Field emission flat lamp and fabricating method thereof,and cathode plate and fabricating method thereo ,” US20070164652A1, 2007。
[16]美國專利, “Field emission flat lamp with strip cathode structure and strup gate structure in the same plane,”US007602114B2,2009。
[17]Lee, S. M., Kim, W. J., and Kim, Y. H., “Transparent field emitters with light reflector,” Journal of Physica E, vol. 43, pp. 405-409, 2010.
[18]蘇怡雯,“以旋轉塗佈法製備背向式奈米碳管場發射照明元件”,碩士學位論文,清雲科技大學電子工程研究所碩士班,桃園,第26頁,2011。
[19]黃宣宜,“場發射顯示器技術現況與發展”,光連雙月刊,第39 期,第59-64頁,2002。
[20]楊素華、藍慶忠,“奈米碳管場發射顯示器”,科學發展,第382期,第69頁,2004。
[21]http://big5.xinhuanet.com/gate/big5/news,xinhuanet.com/tech/2006-10/04/content_5168085.htm
[22]Iijima, S., “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56,1991.
[23]Loiseau, A., Launois, P., Petit, P., Roche, S., and Salvetat, J. P., Uuderstanding Carbon Na notube, Springer, Heidelberg, pp. 495-542, 2006.
[24]Yahachi, S. and Sashiro, U., “Field emission from carbon nanotubes and its application to electron sources,” Carbon, Vol. 38, pp. 169-182, 2000.
[25]Pan, L. J., Konishi, Y., Tanaka, H., Suekane, O., Nosaka T., and Nakayama, Y., “Effect of Morphology on Field Emission Properties of Carbon Nanocoils and Carbon Nanotubes,” Japanese Journal of Applied Physics, Vol. 44, No. 4A, pp. 1652–1654, 2005.
[26]甘明吉,“奈米尺寸碳材料之電子發射特性”,博士論文,國立成功大學材料科學及工程研究所,臺南,第35-42頁,2003。
[27]羅吉宗,“場發射技術與應用”,大同公司研究報告,台北,第5頁,2009。
[28]Modinos, A., “Electron emission from free-electron metal, in Field, Thermionic, and Second Electron Emission Spectroscopy, ” Plenum Press, Chapter 1, pp.1-34, 1984.
[29]Chiu, P. W. and Roth, S., “Transition from Direct Tunneling to Field Emissionin Carbon Nanotube Intramolecular Junctions,” Applied Physics Letters, Vol.92, pp. 042107-042107-3, 2008.
[30]Liang, S. D. and Chen, L., “Generalized Fowler-Nordheim Theory of FieldEmission of Carbon Nanotubes,” Physical Review Letters, Vol, 101, pp. 027602-027604, 2008.
[31]Liao, Q. L., Zhang, Y. , Qi, J. J., Huang, Y. H., Gao, Z. J., Xia, L. S., and Yan, X. Q., “Field Emission Properties of a Carbon Nanotube Cathode in Different Electric Field Modes,” Materials Letters, Vol. 62, pp. 1941–1944, 2008.
[32]Fowler, R. H., and Nordheim. L., “Electron Emission in Intense Electric Fields.” roceeding of the Royal Society of Corbon, No. 781 ., Vol, 119, pp. 173-181, 2010.
[33]沈曾民,“新型碳材料”,材料科學與工程出版中心,北京,第159頁,2006。
[34]Ahmed, S. and Neil J, C., “The synthesis, properties and uses of carbon materials with helical morphology.” Journal of Advanced Research, Cairo, Vol, 3, pp.195-223., 2011.
[35]Motojima, S., Asakura, S., Hirata, M., and Iwanaga, H., “Effect of Metal Impurities on the Growth of Micro-Coiled Carbon Fibres by Pyrolysis of Acetylene,” Materials Science and Engineering B, Vol. 34, pp. 9-11, 1995.
[36]Nobuharu, O., Shoji, H., Toshiki, G., and Yoshikayzu, N., “Synthesis of carbon Tubule Nanocoils Using Fe-In-Sn-O Fine Particles as Catalysts.” J. Phys. Chem. B 109. 2005.
[37]Ding, D. Y., Wang, J. N., Cao, Z. L., Dai, J. H., and Yu, F., “Ni-Ni3P AlloyCatalyst for Carbon Nanostructures,” Chemical Physics Letters, Vol. 371, pp.333-336, 2003.
[38]Pan, L., Hayashidaa, T., Haradab, A., and Nakayama, Y., “Effects of Iron and Indium Tin Oxide on the Growth of Carbon Tubule Nanocoils,” Physica B, Vol.323, pp. 350-351, 2002.
[39]Chang, N. K. and Chang, S. H., “High-Yield synthesis of carbon nanocoils on stainless steel,” Carbon, Vol. 46, pp. 1106-1109, 2008.
[40]Baker, R. T. K., Braber, M. A., and Harries, P. S., Feates, F. S., and Waite, R. J., “Nucleation and Growth of Carbon Deposits from the Nickel Catalyzed Decomposition of Acetylene,” Journal of Catalysis, Vol. 26, pp. 51-62, 1972.
[41]Motojima, S., and Chen, Q., “Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition,” J. App1. Phy, No. 7, Vol. 85, pp.3919-3921. 1999.
[42]Wen, Y. and Shen, Z., “Synthesis of Regular Coiled Carbon Nanotubes by Ni-Catalyzed Pyrolysis of Acetylene and a Growth Mechanism Analysis,” Carbon, Vol. 39, pp. 2369-2386, 2001.
[43]Furuya, Y., Hashishin, T., Iwanaga, H., Motojima, S., and Hishikawa, Y.,“ Interaction of hydrogen with carbon coils at low temperature,” Carbon, Vol.42, pp. 331-335, 2004.
[44]Chen, X., Motojima, S., and Iwanaga, H., “Carbon coatings on carbon microcoilsby pyrolysis of methane and their properties,” Carbon, Vol. 37, pp.1825-1831, 1999.
[45]Pan, L. J., Hayashida, T. C., Zhang M., and Nakayama, Y., “Field Emission Properties of Carbon Tubule Nanocoils,” Japanese Journal of Applied Physics, Vol. 40, No. 3B, pp.l235-l237, 2001.
[46]Sung, Y. W., Ok, G. J., Kim, J. W., Lee, M. S., Yeon, C. S., Lee, Y. H., and Kim, H. Y., “Synthesis and field emission characteristics of carbon nanocoils with a high aspect ratio supported by copper micro-tips,” Nanotechnology, Vol. 18, No. 24, pp. 245603, 2007.
[47]Zhang, Z. J., He, P. G., Sun, Z., Feng, T., Chen, Y. W., Li, H. L., and Tay, B. K.,“ Growth and field emission property of coiled carbon nanostructure using copper as catalyst,” Journal of Applied Surface Sciences, Vol. 94, No. 4, pp.235-237, 2009.
[48]成會明、張勁燕,“奈米碳管”, 五南圖書出版公司,台北,第575-582頁,2004。
[49]Qi, X., Zhong, W., Deng, Y., Au, C. T., and Du. Y. W., “Synthesis of Helical Carbon Nanotubes, Worm-Like Carbon Nanotubes and Nanocoils at 450℃ and Their Magnetic Properties,” Carbon, Vol. 48, pp. 365-376, 2010.
[50]Liu, Y. F. and Shen, Z. G., “Preparation of Carbon Microcoils and NanocoilUsing Activated Carbon Nanotubes as Catalyst Support,” Carbon, Vol. 43, pp.1557-1558, 2005.
[51]Yang, S. M., Chen X. Q., Motojima, S., and Ichihara, M., “Morphology and Microstructure of Spring-Like Carbon Micro-Coils/Nano-Coils Prepared by Catalytic Pyrolysis of Acetylene Using Fe-Containing Alloy Ctalysts,” Carbon, Vol. 43, pp. 827-834, 2005.
[52]Baddour, C. E., Upham, D. C. and Meunier, J. L. “Direct and repetitive growth cycles of carbon nanotubes on stainless particles by chemical deposition in a fluidized bed.” Carbon, Vol. 48, pp.2652-2656, 2010.
[53]Tang, N. Zhong, W., Gedanken, A., and Du, Y. W., “High Magnetization Helical Carbon Nanofibers Produced by Nanoparticle Catalysis,” Journal of Physical Chemistry B, Vol. 110, pp. 11772-11774, 2006.
[54]Li, D. W., Pan, L. J., Qian, J. J., and Liu, D. P., “Highly Efficient Synthesis of Carbon Nanocoils by Catalyst Particles Prepared by a Sol-Gel Method,” Carbon, Vol. 48, pp.l70-175, 2010.
[55]許添順,“化學置換程序回收氯化銅蝕刻廢液之研究”,碩士論文,中央大學環境工程研究所,桃園,第22頁,2002。
[56]翁秀蓉,“奈米碳螺旋線圈之成長製程及場發射特性研究”,碩士論文,國防大學理工學院應用化學及材料科學系,桃園,第65-68頁,2010。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top