跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 10:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅麗娟
研究生(外文):Li Jyuan Luo
論文名稱:開發注射型生物降解原位凝膠藥物傳輸系統應用於青光眼治療
論文名稱(外文):Development of Injectable Biodegradable In-Situ Forming Drug Delivery System for Glaucoma Therapy
指導教授:賴瑞陽
指導教授(外文):J. Y. Lai
學位類別:博士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:234
中文關鍵詞:注射型藥物傳輸系統青光眼生醫材料工程水膠緩釋增能
外文關鍵詞:Injectable drug delivery systemGlaucomaBiomaterial engineeringHydrogelExtended releaseFunctional boost
相關次數:
  • 被引用被引用:0
  • 點閱點閱:404
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
青光眼位居全球致盲眼疾之次位。就臨床醫學而言,藥物療法確實頗具契機;但其傳輸效能卻也受到眼部組織屏障所侷限。本論文之主要目標即開發青光眼治療應用的注射型生物降解原位凝膠藥物傳輸系統,期藉由生醫材料工學探索,以改善藥物生物可利用率及強化青光眼疾治療功效。第2與3章分別著重於延長釋藥及功能擴充之水膠材料設計與評估。在第2.1章,以三種不同布魯姆指數之明膠進行接枝聚異丙基丙烯醯胺,並分析其藥物釋放與活性影響。接續在第2.2章,利用四種不同碳鏈長度之鏈轉移劑合成感溫性高分子刷,進而接枝於胺基化明膠,作為青光眼藥物傳輸系統。有鑑於青光眼係一種需長時間控制眼壓之眼疾,故第2.3與2.4章也思及更換原本明膠主體,而改採降解較慢之幾丁聚醣,並藉由調控去乙醯化程度,以獲致長效眼藥傳輸與疾患療效。此部分結果顯示當布魯姆指數愈高與碳鏈長度愈長,載體材料具較佳之抗青光眼藥物傳輸應用潛力。此外,以天然多醣類材料作為可降解主體分子更可大幅延長眼內藥物釋放期程。
另一方面,過高眼壓與氧化壓力儼然已成為診斷罹患青光眼病徵之重要風險因子。因此,本研究也思及將沒食子酸導入水膠載體材料以製備一具有抗氧化功能之眼前房藥物遞送系統,並探索應用於改善因過高眼壓/氧化壓力而產生之角膜曲率、視網膜生理訊號與組織變異。第3.1章,利用氧化還原法製備一多功能高分子,並探討其作為可緩解氧化壓力之藥物載體可行性。第3.2章則接續評估不同氧化還原反應時間對所製備的藥物載體組成特性與傳輸效能影響。有鑑於抗氧化藥物載體最佳化對視網膜組織修復具顯著影響,第3.3章擬分析不同氧化還原反應溫度合成材料在青光眼疾之眼後節組織療效。此部分結果顯示可經由氧化還原法成功製備一具抗氧化功能之生物降解原位凝膠,並調控反應時間/溫度,以最佳化藥物載體。第4章擬以感溫與降解之高分子共聚物混入兒茶素衍生物合成一具有兼具抗發炎/抗氧化效能之載體應用於乾眼症動物模組,將高分子藥水滴入下眼瞼的結膜囊以形成一非侵入式藥物儲艙,藉此達到延長藥物釋放能力。結果顯示此含藥之藥物載體可延緩眼表發炎反應,並降低角膜上皮與杯狀細胞凋亡,有助於緩解乾眼症所導致的嚴重發炎問題。
基於上述研究發現,藉由調控不同材料之因子(布魯姆指數/碳鏈長度/乙醯化程度)以製備一高分子接枝聚異丙基丙烯醯胺,能夠建立一套長效型藥物載體應用於青光眼治療之新策略。另一方面,藉由抗氧化分子功能化修飾於注射型凝膠,不僅可使載體具降眼壓藥物釋放能力,同時亦可緩解眼內氧化壓力及避免視網膜組織 損害。總結本論文之成果,以生物降解原位凝膠藥物傳輸系統應用於眼部藥物傳輸系統治療確實極具潛力。
Glaucoma is the second worldwide leading cause of blindness. Eye drops are frequently used to administer medication for ocular disease treatment. However, the main challenges with this type of dosage form include short precorneal residence time, poor corneal penetration, and low ocular bioavailability. Hence, to improve ocular bioavailability and pharmacological response, we used intracameral administration of drug containing thermo-sensitive biodegradable copolymer for glaucoma therapy. In chapter 2 and 3, these charpters focused on “Extended Drug Delivery System” and “Antioxidation Functionalization Biodegrable Hydrogel”. In chapter 2.1, three different Bloom numbers of gelatins were used to synthesize thermosensitive hydrogels and recognize effects on pharmacological treatment. In chapter 2.2, four kinds of alkyl chain length of monothiol-terminated alkyl carboxylic acids were used to synthesized various carboxylic end-capped PNIPAAm samples. In addition, the glaucoma is considered to be a chronic disease requiring lifetime medical therapy and it often takes years to monitor disease progression. In chapter 2.3 and 2.4, the polysaccharide-based drug delivery systems with various deacetylation degree were developed for extended drug release prolife and improved delivery performance. The result of the first stage, the higher Bloom number and longer alkyl chain length can enhance antiglaucoma efficacy and therapeutic effectiveness. Furthermore, the chitosan-based thermogels can be higher potentially utilized as ophthalmic biomaterial carriers for extended drug release and improved delivery performance.
On the other hand, hypertension and oxidative stress are known to be involved in glaucomatous development and progression. In chapter 3.1, antioxidant gallic acid functionalized thermosensitive biodegradable hydrogel was developed. In chapter 3.2, we have explored the effect of redox reaction time of hydroxyl radicals and the amount of gallic acid grafted onto carrier. Given that ocular hypertension and oxidative stress disrupts axonal transport of retinal ganglion cells and results in cell death. In chatper 3.3, we further discussed the effect of redox reaction temperature of hydroxyl radicals and examined in vivo pharmacological efficacy of drug containing carriers in glaucomatous rabbits. The result of the second stage, a series of polymers were synthesized via adjusting redox reaction time and temperature. In chapter 4, the therapeutic action of epigallocatechin gallate is linked to its strong bioactivities (antioxidant and anti-inflammation capacity), which may be helpful in treating preservative (i.e., benzalkonium chloride)-induced rabbit dry eye. Given that biodegradable in situ gelling delivery systems may have potential applications in the design of ophthalmic pharmaceutical formulations, this study, for the first time, aims to develop carriers for topical antioxidant molecular administration in the treatment of dry eye disease. Our findings suggest that carrier is responsible for enhanced pharmacological efficacy of topically instilled epigallocatechin gallate, thereby demonstrating the benefits of using biodegradable in situ gelling delivery system to overcome the drawbacks of limited dry eye relief associated with eye drop dosage form.
In the present data, we have demonstrated that the ophthalmic biomaterial carriers for extended drug release can be synthesized by adjusting the factors (Bloom number/alkyl chain length/polymer backbone/ deacetylation degree) to optimize the delivery performance. On the other hand, the redox reaction time/temperature-mediated gallic acid grafting amount is a key parameter in the development of antioxidant drug delivery systems for protection against retinal injury, suggesting the benefits of biomaterials to prevent oucalar disease development. Furthermore, the information about the effect of single epigallocatechin gallate drop administration using biodegradable in situ gelling carrier on dry eye relief presents an opportunity for further development of pharmacological interventions. Overall, this obtained data will be of high clinical significance and contribute to the knowledge of materials for management of ocular diseases.
指導教授推薦書
論文口試委員審定書
致謝……………………………………………………………………...iii
中文摘要………………………………………………………………...iv
Abstract…………………………………………….…………………….vi
目錄……………………………………………….……………………..ix
圖目錄…………………………………………………………………xvii
Chapter 1: Motivation and Objectives 1
Chapter 2: Extended Release 4
2.1. On the importance of Bloom number of gelatin to the development of biodegradable in situ gelling copolymers for intracameral drug delivery 4
2.1.1. Introduction 5
2.1.2. Experimental 9
2.1.2.1. Materials 9
2.1.2.2. Imino acid content and triple-helix molecular conformation 10
2.1.2.3. Synthesis of GN 10
2.1.2.4. Phase transition temperature 11
2.1.2.5. Degradability 12
2.1.2.6. Drug encapsulation efficiency 12
2.1.2.7. In vitro drug release profile 13
2.1.2.8. Pharmacological response to pilocarpine 13
2.1.2.9. In vitro biocompatibility 15
2.1.2.10. In vivo biocompatibility 16
2.1.2.11. Antiglaucoma efficacy 18
2.1.3. Result and Discussion…………………………………………….20
2.1.3.1. Imino acid content and triple-helix molecular conformation 20
2.1.3.2. Phase transition temperature 23
2.1.3.3. Degradability 24
2.1.3.4. Drug encapsulation efficiency 25
2.1.3.5. In vitro drug release profile 27
2.1.3.6. In vitro biocompatibility 28
2.1.3.7. Pharmacological response to pilocarpine 29
2.1.3.8. In vivo biocompatibility 30
2.1.3.9. Antiglaucoma efficacy 33
2.1.4. Conclusion 36
2.2. The role of alkyl chain length of monothiol-terminated alkyl carboxylic acid in the synthesis, characterization, and application of gelatin-g-poly (N-isopropylacrylamide) carriers for antiglaucoma drug delivery 38
2.2.1. Introduction 39
2.2.2. Experimental 42
2.2.2.1. Materials 42
2.2.2.2. Synthesis of carboxylic end-capped PNIPAAm and GN 42
2.2.2.3. Phase transition characterizations 44
2.2.2.4. In vitro degradation tests 45
2.2.2.5. In vitro drug release studies 45
2.2.2.6. Biocompatibility studies 46
2.2.2.7. Animal studies 47
2.2.3. Result and Discussion 48
2.2.3.1. Synthesis of carboxylic end-capped PNIPAAm and GN 48
2.2.3.2. Phase transition characterizations 50
2.2.3.3. In vitro degradation tests 52
2.2.3.4 In vitro drug release studies 53
2.2.3.5. Biocompatibility studies 55
2.2.3.6. Animal studies 56
2.2.4. Conclusion 62
2.3. Chitosan-g-poly(N-isopropylacrylamide) copolymers as delivery carriers for intracameral pilocarpine administration 63
2.3.1. Introduction 64
2.3.2. Experimental 66
2.3.2.1. Materials 66
2.3.2.2. Synthesis and characterization of Chi-PN 66
2.3.2.3. Degradability 67
2.3.2.4. Drug release profile 67
2.3.2.5. Cytocompatibility 67
2.3.2.6. Antiglaucoma efficacy 68
2.3.3. Result and Discussion 69
2.3.3.1. Synthesis and characterization of Chi-PN 69
2.3.3.2 Phase transition temperature 71
2.3.3.3. Degradability 73
2.3.3.4. Drug release profile 74
2.3.3.5. Cytocompatibility 77
2.3.3.6. Antiglaucoma efficacy 78
2.3.4. Conclusion 80
2.4. Effect of deacetylation degree on controlled pilocarpine release from injectable chitosan-g-poly(N-isopropylacrylamide) carriers 81
2.4.1. Introduction 82
2.4.2. Experimental 83
2.4.2.1. Preparation and characterization of CN biodegradable thermogels using chitosan samples with varying DDs 83
2.4.2.2. Drug release profile 84
2.4.2.3. Biocompatibility of CN biodegradable thermogels 84
2.4.2.4. Pharmacological efficacy of drug-loaded CN biodegradable thermogels 84
2.4.3. Result and Discussion 85
2.4.3.1. Characterization of CN biodegradable thermogels using chitosan samples with varying DDs 85
2.4.3.2. Biocompatibility of CN biodegradable thermogels 90
2.4.3.3. In vivo pharmacological efficacy of drug-loaded CN biodegradable thermogels 92
2.4.4. Conclusion 94
Chapter 3:Functional Boost………………………………………..95
3.1. Antioxidant gallic acid-functionalized biodegradable in situ gelling copolymers for cytoprotective antiglaucoma drug delivery systems 95
3.1.1. Introduction 96
3.1.2. Experimental 100
3.1.2.1. Materials 100
3.1.2.2. Synthesis of GA-Functionalized GN (GNGA). 100
3.1.2.4. Characterization of GA-Functionalized GN (GNGA) 100
3.1.2.5. Determination of Scavenging Activity against DPPH Radical 101
3.1.2.6. Phase-Transition, Degradation, and drug release studies 101
3.1.2.7. Measurement of Antioxidant Activity against H2O2 102
3.1.2.7.1. Cell Culture and Treatment 102
3.1.2.7.2. Measurement of Cell Viability 102
3.1.2.7.3. Measurement of Intracellular ROS 103
3.1.2.7.4. Measurement of Intracellular Calcium 103
3.1.2.8. Animal Studies 104
3.1.3. Result and Discussion 105
3.1.3.1. Characterization of GA-Functionalized GN (GNGA) 105
3.1.3.2. Determination of Scavenging Activity against DPPH Radical 106
3.1.3.3. Phase-Transition Characterizations 107
3.1.3.4. In Vitro Degradation Tests 108
3.1.3.5. In Vitro Drug Release Studies 109
3.1.3.6. Measurement of Antioxidant Activity against H2O2 110
3.1.3.7. Measurement of Cell Viability 111
3.1.3.8. Measurement of Intracellular ROS 112
3.1.3.9. Measurement of Intracellular Calcium 113
3.1.3.10. Animal Studies 115
3.1.4. Conclusion 118
3.2. Gallic acid grafting effect on delivery performance and antiglaucoma efficacy of antioxidant-functionalized intracameral pilocarpine carriers 119
3.2.1. Introduction 120
3.2.2. Experimental 123
3.2.2.1. Synthesis of GA-functionalized GN (GNGA) 123
3.2.2.2. Determination of total antioxidant activity and scavenging ability against DPPH radical 123
3.2.2.3. Determination of water content, phase transition temperature, and degradability 124
3.2.2.4. In vitro biocompatibility studies 124
3.2.2.5. Measurement of antioxidant activity against H2O2 124
3.2.2.6. Animal studies 125
3.2.3. Result and Discussion 126
3.2.3.1.Total antioxidant activity and scavenging ability 126
3.2.3.2. Determination of water content, phase transition temperature, and degradability 128
3.2.3.3. In vitro drug release studies 128
3.2.3.4. In vitro biocompatibility studies 132
3.2.3.5. Measurement of antioxidant activity against H2O2 134
3.2.3.6. Animal studies 136
3.2.3.6.1. IOP and pupil diameter 136
3.2.3.6.2. Total antioxidant level and nitrite level 137
3.2.4. Conclusion 140
3.3. In vivo pharmacological evaluations of pilocarpine-loaded antioxidant-functionalized biodegradable thermogels in glaucomatous rabbits 142
3.3.1. Introduction 143
3.3.2. Experimental 146
3.3.2.1. Synthesis of GA-functionalized GN 146
3.3.2.2. Characterization studies 146
3.3.2.3. In vitro antioxidant activity studies 146
3.3.2.4. Animals 146
3.3.2.4.1. In vivo biocompatibility studies 146
3.3.2.4.2. In vivo drug release studies 147
3.3.2.4.3. Glaucoma therapy studies 147
3.3.3. Result and Discussion 150
3.3.3.1. Characterization studies 150
3.3.3.2 In vitro antioxidant activity studies 151
3.3.3.3 In vivo biocompatibility studies 152
3.3.3.4 In vivo drug release studies 154
3.3.3.5 Corneal topography measurements 155
3.3.3.6. Electroretinogram measurements 156
3.3.3.7. Retinal histological examinations 157
3.3.3.8. Biochemical assays 158
3.3.4. Conclusion 161
Chapter 4: Other Application: Dry Eye Disease…...……….………162
4.1 Epigallocatechin Gallate-Loaded GN as a New Ophthalmic Pharmaceutical Formulation for Topical Use in the Treatment of Dry Eye Syndrome……………………………………………………………….162
4.1.1. Introduction 163
4.1.2. Experimental 165
4.1.2.1. Materials 165
4.1.2.2. Characterization of EGCG-loaded GN 165
4.1.2.3. Anti-inflammatory and antioxidant activity studies 165
4.1.2.4. Animal studies 166
4.1.3. Result and Discussion 169
4.1.3.1. Characterization of EGCG loading Gelatin-g-PNIPAAm 169
4.1.3.2. Anti-inflammatory and antioxidant activity studies 171
4.1.3.3. Clinical observations 173
4.1.3.4. Histological examinations 175
4.1.4. Conclusion 178
Reference 179
Bibliography…………………………………………………..……….203













List of Figures
Figure 2.1.1. Schematic representation of development of GN copolymers by using three different Bloom numbers of gelatins………………………4
Figure 2.1.2. (a) Imino acid content of gelatin samples. (b) Deconvolution of amide I band of various samples……..………………………………..21
Figure 2.1.3. (a) Differential scanning calorimetry thermogram (b) lower critical solution temperature (c) Time-course study of the weight remaining (d) Time-course study of the concentration of pilocarpine released……26
Figure 2.1.4. (a) Phase-contrast micrographs (b) Intracellular calcium level………………………………………………………………...……30
Figure 2.1.5. (a) Representative specular microscopic images (b) Specular microscopy measurements………………………………………………32
Figure 2.1.6. (a) intraocular pressure (b) pupil diameter…………………35
Figure 2.2.1. Schematic representation of development of GN copolymers by using four different alkyl chain length of chain transfer agent of carboxyl-terminated PNIPAAm…………………………………………38
Figure 2.2.2. (a) GPC chromatograms (b) FTIR spectra…………………49
Figure 2.2.3. (a) Water contact angle images (b) Graph of contact angle in degrees (c) DSC thermograms (d) GFT thermograms…………….…….51
Figure 2.2.4. (a) Time-course of weight loss (b) Determinations of hydroxyproline released (c) Time-course of the concentration of pilocarpine released (d) Cumulative released……………………..……..54
Figure 2.2.5. (a) Cell proliferation assay (b) live/dead assay (c) IL-6 (d) ATP1A1…………………………………………………………………56
Figure 2.2.6. (a) Time-course of the concentration of pilocarpine released (b) IOP measurement (c) Representative specular microscopic images (d) histological images of retina. ……………………………………………61
Figure 2.3.1. Schematic representation of development of chitosan-g-PNIPAAm (Chi-PN) biodegradable in situ gelling delivery system……..63
Figure 2.3.2. (a) FTIR spectra (b) EDS spectrogram (c) Efficiency of grafting and grafting ratio. (d) Gross morphological observation………..72
Figure 2.3.3. (a) Time-course of weight loss (b) Mechanical spectra (c) FTIR spectra (d) Time-course of the concentration of pilocarpine released……………………………………………………………….....76
Figure 2.3.4. (a) Cell viability (b) Corneal histology (c) Level of IL-6 protein..………………………………………………………………….77
Figure 2.3.5. (a) IOP and (b) specular microscopic images…………….79
Figure 2.4.1. Schematic representation of effect of deacetylation degree on controlled pilocarpine release from injectable chitosan-g-poly(N-isopropylacrylamide) carriers……………………………………………81
Figure 2.4.2. (a) 1H NMR spectra (b) FTIR spectra (c) grafting ratio……88
Figure 2.4.3. (a) weight loss (b) D-glucosamine concentration in degradation media (c) Drug encapsulation efficiency (d) Cumulative release..…………………………………………………………….……89
Figure 2.4.4. (a) Fluorescence photomicrographs (b) comet tail lengths (c) caspase-3 activities (c) Results are expressed as percentage of Controls..91
Figure 2.4.5. (a) Corneal topographic maps (b) curvature values (c) histological fluorescence images (d) anterior chamber angle values1..…93
Figure 3.1.1. Schematic representation of development of GA-modified GN as a novel multifunctional polymer carrier………………………….95
Figure 3.1.2. (a) UV–vis spectra (b) FTIR spectra (c) Photographs of the reaction of DPPH reagent (d) DSC thermograms……………………....108
Figure 3.1.3. Effect of polymer carrier materials on H2O2-induced cell viability. (a) Representative phase-contrast micrographs (b) fluorescent images (DCFH-DA) (c) fluorescent images (Fura-2AM)……….…….114
Figure 3.1.4. (a) Representative slit-lamp biomicroscopic images (b) specular microscopic images of corneal endothelium (c) Levels of total antioxidant (d) nitrite in the aqueous humor……………………………117
Figure 3.2.1. Schematic representation of functionalization of GN with GA molecules…………………………………………………………..…..119
Figure 3.2.2. (a/b) Total antioxidant activities (c/d) DPPH scavenging activities………………………………………………………………..126
Figure 3.2.3. 1H NMR spectra………………………………………….127
Figure 3.2.4. (a) DSC thermograms (b) Cumulative release (c) Live/Dead (d) Gene expression of IL-6.……………………………………………133
Figure 3.2.5. Effect of polymer carrier materials on H2O2-induced (a/b) cell viability and (c/d) intracellular ROS.………………………………..….136
Figure 3.2.6. Measurements of (a) IOP and (b) specular microscopic images (c) the levels of total antioxidant and (d) nitrite level…………..139
Figure 3.3.1. Schematic representation of functionalization of GN with GA molecules..………………………….……………………….………....142
Figure 3.3.2. (a,b) ROS and (c,d) calcium……………………….…….152
Figure 3.3.3. (a) specular microscopic images (b) corneal histology….153
Figure 3.3.4. (a) IOP (b) Representative corneal topographic maps (c) ERG recordings (d) histological images of retina..…………………….……158
Figure 3.3.5. (a) SOD activity (b) CAT activity (c) GPx activity (d) GSH level...………………………….……………………….………………160
Figure 4.1.1. Scheme of experimental design of the study. A BAC-induced rabbit dry eye model was used to examine therapeutic efficacy of short-term topical EGCG-loaded GN for the treatment of dry eye syndrome…162
Figure 4.1.2. (a) 1H NMR spectra (b) DSC thermograms (c) Time-course of weight loss (d) The concentration of EGCG and cumulative release..170
Figure 4.1.3. Level of (a) IL-6 and (b) MCP-1 (c) Fluorescent images (d) Intracellular levels of ROS……………………………………………..172
Figure 4.1.4. Corneal fluorescein staining (a) images and (b) scores and rose bengal staining (c) images and (d) scores…………………….……174
Figure 4.1.5. (a) Histological images, (b) thickness values (c) conjunctival impression cytological images (d) immunofluorescence images………………………………………………………………….177
Reference
1. Li, Y., Rodrigues, J., & Tomás, H. (2012). Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chemical Society Reviews, 41(6), 2193-2221.
2. Olsen, D., Yang, C., Bodo, M., Chang, R., Leigh, S., Baez, J., Carmichael, D., Perälä, M., Hämäläinen, E.R., Jarvinen, M., & Polarek, J. (2003). Recombinant collagen and gelatin for drug delivery. Advanced drug delivery reviews, 55(12), 1547-1567.
3. McDermott, M. K., Chen, T., Williams, C. M., Markley, K. M., & Payne, G. F. (2004). Mechanical properties of biomimetic tissue adhesive based on the microbial transglutaminase-catalyzed crosslinking of gelatin. Biomacromolecules, 5(4), 1270-1279.
4. Pal, K., Banthia, A. K., & Majumdar, D. K. (2007). Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications. Aaps Pharmscitech, 8(1), 21.
5. Peng, H. T., Martineau, L., & Shek, P. N. (2008). Hydrogel-elastomer composite biomaterials: 3. Effects of gelatin molecular weight and type on the preparation and physical properties of interpenetrating polymer networks. Journal of Materials Science: Materials in Medicine, 19(3), 997-1007.
6. Bigi, A., Panzavolta, S., & Rubini, K. (2004). Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials, 25(25), 5675-5680.
7. Kempka, A. P., Souza, S. M. A. G., Ulson de Souza, A. A., Prestes, R. C., & Ogliari, D. (2014). Influence of bloom number and plastifiers on gelatin matrices produced for enzyme immobilization. Brazilian Journal of Chemical Engineering, 31(1), 95-108.
8. Maiden, N. R., Fisk, W., Wachsberger, C., & Byard, R. W. (2015). Ballistics ordnance gelatin-How different concentrations, temperatures and curing times affect calibration results. Journal of forensic and legal medicine, 34, 145-150.
9. Dressler, M., Dombrowski, F., Simon, U., Börnstein, J., Hodoroaba, V. D., Feigl, M., Grunow, S., Gildenhaar, R., & Neumann, M. (2011). Influence of gelatin coatings on compressive strength of porous hydroxyapatite ceramics. Journal of the European Ceramic Society, 31(4), 523-529.
10. Rose, J. B., Pacelli, S., Haj, A. J. E., Dua, H. S., Hopkinson, A., White, L. J., & Rose, F. R. (2014). Gelatin-based materials in ocular tissue engineering. Materials, 7(4), 3106-3135.
11. Lai, J. Y. (2010). Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use. Journal of Materials Science: Materials in Medicine, 21(6), 1899-1911.
12. Lai, J. Y. (2009). The role of bloom index of gelatin on the interaction with retinal pigment epithelial cells. International journal of molecular sciences, 10(8), 3442-3456.
13. Hsiue, G. H., Lai, J. Y., & Lin, P. K. (2002). Absorbable sandwich‐like membrane for retinal‐sheet transplantation. Journal of Biomedical Materials Research Part A, 61(1), 19-25.
14. Lai, J. Y., Lu, P. L., Chen, K. H., Tabata, Y., & Hsiue, G. H. (2006). Effect of charge and molecular weight on the functionality of gelatin carriers for corneal endothelial cell therapy. Biomacromolecules, 7(6), 1836-1844.
15. Lai, J. Y., & Li, Y. T. (2010). Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers. Biomacromolecules, 11(5), 1387-1397.
16. Nahar, M., Mishra, D., Dubey, V., & Jain, N. K. (2008). Development, characterization, and toxicity evaluation of amphotericin B–loaded gelatin nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 4(3), 252-261.
17. Saxena, A., Sachin, K., Bohidar, H. B., & Verma, A. K. (2005). Effect of molecular weight heterogeneity on drug encapsulation efficiency of gelatin nano-particles. Colloids and Surfaces B: Biointerfaces, 45(1), 42-48.
18. Vandervoort, J., & Ludwig, A. (2004). Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. European Journal of Pharmaceutics and Biopharmaceutics, 57(2), 251-261.
19. Lee, Y. C., Millard, J. W., Negvesky, G. J., Butrus, S. I., & Yalkowsky, S. H. (1999). Formulation and in vivo evaluation of ocular insert containing phenylephrine and tropicamide. International journal of pharmaceutics, 182(1), 121-126.
20. Ohya, S., & Matsuda, T. (2005). Poly (N-isopropylacrylamide)(PNIPAM)-grafted gelatin as thermoresponsive three-dimensional artificial extracellular matrix: molecular and formulation parameters vs. cell proliferation potential. Journal of Biomaterials Science, Polymer Edition, 16(7), 809-827.
21. Navaei, A., Truong, D., Heffernan, J., Cutts, J., Brafman, D., Sirianni, R. W., Vernon, B., & Nikkhah, M. (2016). PNIPAAm-based biohybrid injectable hydrogel for cardiac tissue engineering. Acta biomaterialia, 32, 10-23.
22. Curcio, M., Spizzirri, U. G., Iemma, F., Puoci, F., Cirillo, G., Parisi, O. I., & Picci, N. (2010). Grafted thermo-responsive gelatin microspheres as delivery systems in triggered drug release. European Journal of Pharmaceutics and Biopharmaceutics, 76(1), 48-55.
23. Lai, J. Y., & Hsieh, A. C. (2012). A gelatin-g-poly (N-isopropylacrylamide) biodegradable in situ gelling delivery system for the intracameral administration of pilocarpine. Biomaterials, 33(7), 2372-2387.
24. Lai, J. Y. (2013). Biodegradable in situ gelling delivery systems containing pilocarpine as new antiglaucoma formulations: effect of a mercaptoacetic acid/N-isopropylacrylamide molar ratio. Drug design, development and therapy, 7, 1273-1285.
25. Johnson, J. R., & Andrews, F. A. (1970). Lung scleroproteins in age and emphysema. Chest, 57(3), 239-244.
26. Lai, J. Y., Lue, S. J., Cheng, H. Y., & Ma, D. H. K. (2013). Effect of matrix nanostructure on the functionality of carbodiimide cross-linked amniotic membranes as limbal epithelial cell scaffolds. Journal of biomedical nanotechnology, 9(12), 2048-2062.
27. S.S. Lane, P. Burgi, G.S. Milios, M.W. Orchowski, M. Vaughan, E. Schwarte, Comparison of the biomechanical behavior of foldable intraocular lenses, Journal of Cataract & Refractive Surgery 30 (2004) 2397–2402.
28. Lai, J. Y., & Luo, L. J. (2015). Antioxidant gallic acid-functionalized biodegradable in situ gelling copolymers for cytoprotective antiglaucoma drug delivery systems. Biomacromolecules, 16(9), 2950-2963.
29. Husain, S., Kaddour-Djebbar, I., & Abdel-Latif, A. A. (2002). Alterations in arachidonic acid release and phospholipase C-β1 expression in glaucomatous human ciliary muscle cells. Investigative ophthalmology & visual science, 43(4), 1127-1134.
30. Tusi, S. K., Khalaj, L., Ashabi, G., Kiaei, M., & Khodagholi, F. (2011). Alginate oligosaccharide protects against endoplasmic reticulum and mitochondrial-mediated apoptotic cell death and oxidative stress. Biomaterials, 32(23), 5438-5458.
31. Li, J., Lee, S., Choi, S. Y., Lee, S. J., Oh, S. B., Lee, J. H., Chung, S.C., Kim, J.S., Lee, J.H., & Park, K. (2006). Effects of pilocarpine on the secretory acinar cells in human submandibular glands. Life sciences, 79(26), 2441-2447.
32. Lai, J. Y. (2013). Effect of chemical composition on corneal cellular response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid. Materials Science and Engineering: C, 33(7), 3704-3710.
33. Lai, J. Y. (2014). Biofunctionalization of gelatin microcarrier with oxidized hyaluronic acid for corneal keratocyte cultivation. Colloids and Surfaces B: Biointerfaces, 122, 277-286.
34. Lai, J. Y. (2014). Relationship between structure and cytocompatibility of divinyl sulfone cross-linked hyaluronic acid. Carbohydrate polymers, 101, 203-212.
35. Lai, J. Y., Wang, T. P., Li, Y. T., & Tu, I. H. (2012). Synthesis, characterization and ocular biocompatibility of potential keratoprosthetic hydrogels based on photopolymerized poly (2-hydroxyethyl methacrylate)-co-poly (acrylic acid). Journal of Materials Chemistry, 22(5), 1812-1823.
36. Jongjareonrak, A., Benjakul, S., Visessanguan, W., & Tanaka, M. (2006). Skin gelatin from bigeye snapper and brownstripe red snapper: chemical compositions and effect of microbial transglutaminase on gel properties. Food Hydrocolloids, 20(8), 1216-1222.
37. Chandra, M. V., Shamasundar, B. A., & Kumar, P. R. (2013). Visco‐Elastic and Flow Properties of Gelatin from the Bone of Freshwater Fish (Cirrhinus mrigala). Journal of food science, 78(7).
38. Akagündüz, Y., Mosquera, M., Giménez, B., Alemán, A., Montero, P., & Gómez-Guillén, M. C. (2014). Sea bream bones and scales as a source of gelatin and ACE inhibitory peptides. LWT-Food Science and Technology, 55(2), 579-585.
39. Guo, L., Colby, R. H., Lusignan, C. P., & Whitesides, T. H. (2003). Kinetics of triple helix formation in semidilute gelatin solutions. Macromolecules, 36(26), 9999-10008.
40. Liu, H., Wang, B., Barrow, C. J., & Adhikari, B. (2014). Relating the variation of secondary structure of gelatin at fish oil–water interface to adsorption kinetics, dynamic interfacial tension and emulsion stability. Food chemistry, 143, 484-491.
41. Zhu, C. H., Lu, Y., Peng, J., Chen, J. F., & Yu, S. H. (2012). Photothermally Sensitive Poly (N‐isopropylacrylamide)/Graphene Oxide Nanocomposite Hydrogels as Remote Light‐Controlled Liquid Microvalves. Advanced Functional Materials, 22(19), 4017-4022.
42. Mao, L. K., Hwang, J. C., Chang, T. H., Hsieh, C. Y., Tsai, L. S., Chueh, Y. L., Hsu, S.S.H., Lyu, P.C., & Liu, T. J. (2013). Pentacene organic thin-film transistors with solution-based gelatin dielectric. Organic Electronics, 14(4), 1170-1176.
43. Karpinsky-Semper, D., Volmar, C. H., Brothers, S. P., & Slepak, V. Z. (2014). Differential Effects of the Gβ5-RGS7 Complex on Muscarinic M3 Receptor–Induced Ca2+ Influx and Release. Molecular pharmacology, 85(5), 758-768.
44. Ninan, G., Joseph, J., & Abubacker, Z. (2010). Physical, mechanical, and barrier properties of carp and mammalian skin gelatin films. Journal of food science, 75(9).
45. Wang, H., Bongio, M., Farbod, K., Nijhuis, A. W., Van Den Beucken, J., Boerman, O. C., van Hest J. C. M.., Li, Y., Jansem, J. A., & Leeuwenburgh, S. C. G. (2014). Development of injectable organic/inorganic colloidal composite gels made of self-assembling gelatin nanospheres and calcium phosphate nanocrystals. Acta biomaterialia, 10(1), 508-519.
46. Meng, Z. X., Zheng, W., Li, L., & Zheng, Y. F. (2011). Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Materials Chemistry and Physics, 125(3), 606-611.
47. Hsiue, G. H., Guu, J. A., & Cheng, C. C. (2001). Poly (2-hydroxyethyl methacrylate) film as a drug delivery system for pilocarpine. Biomaterials, 22(13), 1763-1769.
48. Jeong, B., Bae, Y. H., & Kim, S. W. (2000). Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. Journal of controlled release, 63(1), 155-163.
49. Joyce, N. C. (2003). Proliferative capacity of the corneal endothelium. Progress in retinal and eye research, 22(3), 359-389.
50. Farahbakhsh, N. A., & Cilluffo, M. C. (1994). Synergistic effect of adrenergic and muscarinic receptor activation on [Ca2+] i in rabbit ciliary body epithelium. The Journal of physiology, 477(2), 215-221.
51. Eto, W., Hirano, K., Hirano, M., Nishimura, J., & Kanaide, H. (2003). Intracellular alkalinization induces Ca2+ influx via non-voltage-operated Ca2+ channels in rat aortic smooth muscle cells. Cell Calcium, 34(6), 477-484.
52. Héon, E., Mathers, W. D., Alward, L. A., Weisenthal, R. W., Sunden, S. L., Fishbaugh, J. A., Taylor C. M., Krachmer, J. H., Sheffield, V. C., & Stone, E. M. (1995). Linkage of posterior polymorphous corneal dystrophy to 20q11. Human molecular genetics, 4(3), 485-488.
53. Lai, J. Y., Lin, P. K., Hsiue, G. H., Cheng, H. Y., Huang, S. J., & Li, Y. T. (2008). Low Bloom strength gelatin as a carrier for potential use in retinal sheet encapsulation and transplantation. Biomacromolecules, 10(2), 310-319.
54. Lai, J. Y., Ma, D. H. K., Cheng, H. Y., Sun, C. C., Huang, S. J., Li, Y. T., & Hsiue, G. H. (2010). Ocular biocompatibility of carbodiimide cross-linked hyaluronic acid hydrogels for cell sheet delivery carriers. Journal of Biomaterials Science, Polymer Edition, 21(3), 359-376.
55. Lai, J. Y. (2014). Effect of chemical composition on corneal tissue response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid. Materials Science and Engineering: C, 34, 334-340.
56. Lu, Y., Li, J., & Wang, G. (2008). In vitro and in vivo evaluation of mPEG-PLA modified liposomes loaded glycyrrhetinic acid. International journal of pharmaceutics, 356(1), 274-281.
57. Calabrese, I., Cavallaro, G., Scialabba, C., Licciardi, M., Merli, M., Sciascia, L., & Liveri, M. L. T. (2013). Montmorillonite nanodevices for the colon metronidazole delivery. International journal of pharmaceutics, 457(1), 224-236.
58. Betsiou, M., Bantsis, G., Zoi, I., & Sikalidis, C. (2012). Adsorption and release of gemcitabine hydrochloride and oxaliplatin by hydroxyapatite. Ceramics International, 38(4), 2719-2724.
59. Tan, H., Ramirez, C. M., Miljkovic, N., Li, H., Rubin, J. P., & Marra, K. G. (2009). Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials, 30(36), 6844-6853.
60. Fitzpatrick, S. D., Jafar Mazumder, M. A., Lasowski, F., Fitzpatrick, L. E., & Sheardown, H. (2010). PNIPAAm-grafted-collagen as an injectable, in situ gelling, bioactive cell delivery scaffold. Biomacromolecules, 11(9), 2261-2267.
61. Wiltsey, C., Christiani, T., Williams, J., Scaramazza, J., Van Sciver, C., Toomer, K., Sheehn, J., Branda, A., Nitzl, A., England, E., Kadlowec, J., Iftode, C., & Vernengo, J. (2015). Thermogelling bioadhesive scaffolds for intervertebral disk tissue engineering: Preliminary in vitro comparison of aldehyde-based versus alginate microparticle-mediated adhesion. Acta biomaterialia, 16, 71-80.
62. Ren, Z., Wang, Y., Ma, S., Duan, S., Yang, X., Gao, P., Zhang, X., & Cai, Q. (2015). Effective bone regeneration using thermosensitive poly (N-isopropylacrylamide) grafted gelatin as injectable carrier for bone mesenchymal stem cells. ACS applied materials & interfaces, 7(34), 19006-19015.
63. Lei, K., Shen, W., Cao, L., Yu, L., & Ding, J. (2015). An injectable thermogel with high radiopacity. Chemical communications, 51(28), 6080-6083.
64. Shen, W., Luan, J., Cao, L., Sun, J., Yu, L., & Ding, J. (2014). Thermogelling polymer–platinum (IV) conjugates for long-term delivery of cisplatin. Biomacromolecules, 16(1), 105-115.
65. Zhang, L., Shen, W., Luan, J., Yang, D., Wei, G., Yu, L., Lu, W., & Ding, J. (2015). Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel. Acta biomaterialia, 23, 271-281.
66. Chen, Y., Li, Y., Shen, W., Li, K., Yu, L., Chen, Q., & Ding, J. (2016). Controlled release of liraglutide using thermogelling polymers in treatment of diabetes. Scientific reports, 6, 31593.
67. Mamedova, N. N., Kotov, N. A., Rogach, A. L., & Studer, J. (2001). Albumin− CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Letters, 1(6), 281-286.
68. Yoshida, R., Sakai, K., Okano, T., & Sakurai, Y. (1992). Surface-modulated skin layers of thermal responsive hydrogels as on-off switches: II. Drug permeation. Journal of Biomaterials Science, Polymer Edition, 3(3), 243-252.
69. Cao, Y., Zhang, C., Shen, W., Cheng, Z., Yu, L. L., & Ping, Q. (2007). Poly (N-isopropylacrylamide)–chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. Journal of controlled release, 120(3), 186-194.
70. Wu, Y., Yao, J., Zhou, J., & Dahmani, F. Z. (2013). Enhanced and sustained topical ocular delivery of cyclosporine A in thermosensitive hyaluronic acid-based in situ forming microgels. International journal of nanomedicine, 8, 3587.
71. Määttä, M., Tervahartiala, T., Harju, M., Airaksinen, J., Autio-Harmainen, H., & Sorsa, T. (2005). Matrix metalloproteinases and their tissue inhibitors in aqueous humor of patients with primary open-angle glaucoma, exfoliation syndrome, and exfoliation glaucoma. Journal of glaucoma, 14(1), 64-69.
72. Robel, I., Subramanian, V., Kuno, M., & Kamat, P. V. (2006). Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. Journal of the American Chemical Society, 128(7), 2385-2393.
73. Sintzel, M. B., Heller, J., Ng, S. Y., Tabatabay, C., Schwach-Abdellaoui, K., & Gurny, R. (1998). In vitro drug release from self-catalyzed poly (ortho ester): case study of 5-fluorouracil. Journal of controlled release, 55(2), 213-218.
74. Katime, I., Novoa, R., & Zuluaga, F. (2001). Swelling kinetics and release studies of theophylline and aminophylline from acrylic acid/n-alkyl methacrylate hydrogels. European Polymer Journal, 37(7), 1465-1471.
75. Hao, Y., Zhao, F., Li, N., Yang, Y., & Li, K. A. (2002). Studies on a high encapsulation of colchicine by a niosome system. International Journal of Pharmaceutics, 244(1), 73-80.
76. Ma, D. H. K., Lai, J. Y., Cheng, H. Y., Tsai, C. C., & Yeh, L. K. (2010). Carbodiimide cross-linked amniotic membranes for cultivation of limbal epithelial cells. Biomaterials, 31(25), 6647-6658.
77. Lai, J. Y., Li, Y. T., Cho, C. H., & Yu, T. C. (2012). Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering. International journal of nanomedicine, 7, 1101.
78. Higuchi, T. (1961). Rate of release of medicaments from ointment bases containing drugs in suspension. Journal of pharmaceutical sciences, 50(10), 874-875.
79. Chi, W., Chen, H., Li, F., Zhu, Y., Yin, W., & Zhuo, Y. (2015). HMGB1 promotes the activation of NLRP3 and caspase-8 inflammasomes via NF-κB pathway in acute glaucoma. Journal of neuroinflammation, 12(1), 137.
80. Harelle, L., Pith, T., Hu, G. H., & Lambla, M. (1994). Chain transfer behavior of fractionated commercial mercaptans in emulsion polymerization of styrene. Journal of applied polymer science, 52(8), 1105-1113.
81. Tjiam, C., & Gomes, V. G. (2014). Optimal operating strategies for emulsion polymerization with chain transfer agent. Industrial & Engineering Chemistry Research, 53(18), 7526-7537.
82. Mlčochová, P., Bystrický, S., Steiner, B., Machová, E., Koóš, M., Velebný, V., & Krčmář, M. (2006). Synthesis and characterization of new biodegradable hyaluronan alkyl derivatives. Biopolymers, 82(1), 74-79.
83. Hou, Y., Matthews, A. R., Smitherman, A. M., Bulick, A. S., Hahn, M. S., Hou, H., Han, A., & Grunlan, M. A. (2008). Thermoresponsive nanocomposite hydrogels with cell-releasing behavior. Biomaterials, 29(22), 3175-3184.
84. Lai, J. Y., Chen, K. H., Hsu, W. M., Hsiue, G. H., & Lee, Y. H. (2006). Bioengineered human corneal endothelium for transplantation. Archives of Ophthalmology, 124(10), 1441-1448.
85. Spori, D. M., Venkataraman, N. V., Tosatti, S. G., Durmaz, F., Spencer, N. D., & Zürcher, S. (2007). Influence of alkyl chain length on phosphate self-assembled monolayers. Langmuir, 23(15), 8053-8060.
86. Kwisnek, L., Kaushik, M., Hoyle, C. E., & Nazarenko, S. (2010). Free Volume, Transport, and Physical Properties of n-Alkyl Derivatized Thiol−Ene Networks: Chain Length Effect. Macromolecules, 43(8), 3859-3867.
87. Wei, H., Zhang, X. Z., Zhou, Y., Cheng, S. X., & Zhuo, R. X. (2006). Self-assembled thermoresponsive micelles of poly (N-isopropylacrylamide-b-methyl methacrylate). Biomaterials, 27(9), 2028-2034.
88. Huber, S., Hutter, N., & Jordan, R. (2008). Effect of end group polarity upon the lower critical solution temperature of poly (2-isopropyl-2-oxazoline). Colloid and Polymer Science, 286(14-15), 1653-1661.
89. Thatiparti, T. R., Tammishetti, S., & Nivasu, M. V. (2010). UV curable polyester polyol acrylate/bentonite nanocomposites: synthesis, characterization, and drug release. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 92(1), 111-119.
90. Jin, R., Lou, B., & Lin, C. (2013). Tyrosinase‐mediated in situ forming hydrogels from biodegradable chondroitin sulfate–tyramine conjugates. Polymer International, 62(3), 353-361.
91. Friess, W., & Schlapp, M. (2002). Release mechanisms from gentamicin loaded poly (lactic‐co‐glycolic acid) (PLGA) microparticles. Journal of pharmaceutical sciences, 91(3), 845-855.
92. Nimesh, S., Aggarwal, A., Kumar, P., Singh, Y., Gupta, K. C., & Chandra, R. (2007). Influence of acyl chain length on transfection mediated by acylated PEI nanoparticles. International journal of pharmaceutics, 337(1), 265-274.
93. Harvey, K. A., Walker, C. L., Pavlina, T. M., Xu, Z., Zaloga, G. P., & Siddiqui, R. A. (2010). Long-chain saturated fatty acids induce pro-inflammatory responses and impact endothelial cell growth. Clinical nutrition, 29(4), 492-500.
94. Lai, J. Y. (2012). Biocompatibility of genipin and glutaraldehyde cross-linked chitosan materials in the anterior chamber of the eye. International journal of molecular sciences, 13(9), 10970-10985.
95. Lai, J. Y., Ma, D. H. K., Lai, M. H., Li, Y. T., Chang, R. J., & Chen, L. M. (2013). Characterization of cross-linked porous gelatin carriers and their interaction with corneal endothelium: biopolymer concentration effect. PLoS One, 8(1), e54058.
96. Bourne, W. M., & McLaren, J. W. (2004). Clinical responses of the corneal endothelium. Experimental eye research, 78(3), 561-572.
97. Bayer, A. U., Neuhardt, T., May, A. C., Martus, P., Maag, K. P., Brodie, S., Lütjen–Drecoll, E., Podos, S. M., & Mittag, T. (2001). Retinal morphology and ERG response in the DBA/2NNia mouse model of angle-closure glaucoma. Investigative ophthalmology & visual science, 42(6), 1258-1265.
98. Osborne, N. N., Ugarte, M., Chao, M., Chidlow, G., Bae, J. H., Wood, J. P. M., & Nash, M. S. (1999). Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Survey of ophthalmology, 43, S102-S128.
99. Zeimer, R., Asrani, S., Zou, S., Quigley, H., & Jampel, H. (1998). Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping: a pilot study. Ophthalmology, 105(2), 224-231.
100. Oharazawa, H., Igarashi, T., Yokota, T., Fujii, H., Suzuki, H., Machide, M., Takahashi, H., Ohta, S., & Ohsawa, I. (2010). Protection of the retina by rapid diffusion of hydrogen: administration of hydrogen-loaded eye drops in retinal ischemia–reperfusion injury. Investigative ophthalmology & visual science, 51(1), 487-492.
101. Le Bourlais, C., Acar, L., Zia, H., Sado, P. A., Needham, T., & Leverge, R. (1998). Ophthalmic drug delivery systems—recent advances. Progress in retinal and eye research, 17(1), 33-58.
102. Coviello, T., Palleschi, A., Grassi, M., Matricardi, P., Bocchinfuso, G., & Alhaique, F. (2005). Scleroglucan: a versatile polysaccharide for modified drug delivery. Molecules, 10(1), 6-33.
103. de la Fuente, M., Raviña, M., Paolicelli, P., Sanchez, A., Seijo, B., & Alonso, M. J. (2010). Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Advanced drug delivery reviews, 62(1), 100-117.
104. Diebold, Y., Jarrín, M., Sáez, V., Carvalho, E. L., Orea, M., Calonge, M., Seijo, B., & Alonso, M. J. (2007). Ocular drug delivery by liposome–chitosan nanoparticle complexes (LCS-NP). Biomaterials, 28(8), 1553-1564.
105. Paolicelli, P., de la Fuente, M., Sánchez, A., Seijo, B., & Alonso, M. J. (2009). Chitosan nanoparticles for drug delivery to the eye. Expert opinion on drug delivery, 6(3), 239-253.
106. Sharma, A. K., Arya, A., Sahoo, P. K., & Majumdar, D. K. (2016). Overview of biopolymers as carriers of antiphlogistic agents for treatment of diverse ocular inflammations. Materials Science and Engineering: C, 67, 779-791.
107. Ullah, H., Wahid, F., Santos, H. A., & Khan, T. (2016). Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydrate polymers, 150, 330-352.
108. Felt, O., Furrer, P., Mayer, J. M., Plazonnet, B., Buri, P., & Gurny, R. (1999). Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. International journal of pharmaceutics, 180(2), 185-193.
109. Jain, K., Suresh Kumar, R., Sood, S., & Dhyanandhan, G. (2013). Betaxolol hydrochloride loaded chitosan nanoparticles for ocular delivery and their anti-glaucoma efficacy. Current drug delivery, 10(5), 493-499.
110. Ali, J., Bhatnagar, A., Kumar, N., & Ali, A. (2014). Chitosan nanoparticles amplify the ocular hypotensive effect of cateolol in rabbits. International journal of biological macromolecules, 65, 479-491.
111. Katiyar, S., Pandit, J., Mondal, R. S., Mishra, A. K., Chuttani, K., Aqil, M., Ali, A., & Sultana, Y. (2014). In situ gelling dorzolamide loaded chitosan nanoparticles for the treatment of glaucoma. Carbohydrate polymers, 102, 117-124.
112. Marques Costa, C., Coli Louvisse de Abreu, L., Pereira dos Santos, E., Augusto Franca Presgrave, O., Trindade Rocha Pierucci, A. P., Rangel Rodrigues, C., Pereira de Sousa, V., Nicoli, S., Ricci Junior, E., & Mendes Cabral, L. (2015). Preparation and evaluation of chitosan submicroparticles containing pilocarpine for glaucoma therapy. Current drug delivery, 12(5), 491-503.
113. Singh, K. H., & Shinde, U. A. (2011). Chitosan nanoparticles for controlled delivery of brimonidine tartrate to the ocular membrane. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 66(8), 594-599.
114. Gaudana, R., Ananthula, H. K., Parenky, A., & Mitra, A. K. (2010). Ocular drug delivery. The AAPS journal, 12(3), 348-360.
115. Wang, Y., Challa, P., Epstein, D. L., & Yuan, F. (2004). Controlled release of ethacrynic acid from poly (lactide-co-glycolide) films for glaucoma treatment. Biomaterials, 25(18), 4279-4285.
116. Geyer, O. R. N. A., Lazar, M. O. S. H. E., Novack, G. D., Shen, D. A. V. I. D., & Eto, C. Y. (1988). Levobunolol compared with timolol: a four-year study. British journal of ophthalmology, 72(12), 892-896.
117. Leung, C. K. S., Yu, M., Weinreb, R. N., Lai, G., Xu, G., & Lam, D. S. C. (2012). Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of retinal nerve fiber layer progression. Ophthalmology, 119(9), 1858-1866.
118. Bao, H., Li, L., Leong, W. C., & Gan, L. H. (2010). Thermo-responsive association of chitosan-graft-poly (N-isopropylacrylamide) in aqueous solutions. The Journal of Physical Chemistry B, 114(32), 10666-10673.
119. Duan, C., Zhang, D., Wang, F., Zheng, D., Jia, L., Feng, F., Liu, Y., Wang, Y., Tian, K., Wang, F., & Zhang, Q. (2011). Chitosan-g-poly (N-isopropylacrylamide) based nanogels for tumor extracellular targeting. International journal of pharmaceutics, 409(1), 252-259.
120. Sun, C. C., Chou, S. F., Lai, J. Y., Cho, C. H., & Lee, C. H. (2016). Dependence of corneal keratocyte adhesion, spreading, and integrin β1 expression on deacetylated chitosan coating. Materials Science and Engineering: C, 63, 222-230.
121. Schuetz, Y. B., Gurny, R., & Jordan, O. (2008). A novel thermoresponsive hydrogel based on chitosan. European Journal of Pharmaceutics and Biopharmaceutics, 68(1), 19-25.
122. Gratieri, T., Gelfuso, G. M., Rocha, E. M., Sarmento, V. H., de Freitas, O., & Lopez, R. F. V. (2010). A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. European Journal of Pharmaceutics and Biopharmaceutics, 75(2), 186-193.
123. Nazar, H., Fatouros, D. G., Van Der Merwe, S. M., Bouropoulos, N., Avgouropoulos, G., Tsibouklis, J., & Roldo, M. (2011). Thermosensitive hydrogels for nasal drug delivery: the formulation and characterisation of systems based on N-trimethyl chitosan chloride. European Journal of Pharmaceutics and Biopharmaceutics, 77(2), 225-232.
124. Li, X., Chen, S., Zhang, B., Li, M., Diao, K., Zhang, Z., Li, J., Xu, Y., Wang, X., & Chen, H. (2012). In situ injectable nano-composite hydrogel composed of curcumin, N, O-carboxymethyl chitosan and oxidized alginate for wound healing application. International journal of pharmaceutics, 437(1), 110-119.
125. Radivojša, M., Grabnar, I., & Grabnar, P. A. (2013). Thermoreversible in situ gelling poloxamer-based systems with chitosan nanocomplexes for prolonged subcutaneous delivery of heparin: Design and in vitro evaluation. European Journal of Pharmaceutical Sciences, 50(1), 93-101.
126. Ruel-Gariépy, E., Shive, M., Bichara, A., Berrada, M., Le Garrec, D., Chenite, A., & Leroux, J. C. (2004). A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. European Journal of Pharmaceutics and Biopharmaceutics, 57(1), 53-63.
127. Lai, J. Y., Li, Y. T., & Wang, T. P. (2010). In vitro response of retinal pigment epithelial cells exposed to chitosan materials prepared with different cross-linkers. International journal of molecular sciences, 11(12), 5256-5272.
128. Tan, K., & Obendorf, S. K. (2007). Fabrication and evaluation of electrospun nanofibrous antimicrobial nylon 6 membranes. Journal of Membrane Science, 305(1), 287-298.
129. Khodaverdi, E., Heidari, Z., Tabassi, S. A. S., Tafaghodi, M., Alibolandi, M., Tekie, F. S. M., Khameneh, B., & Hadizadeh, F. (2015). Injectable supramolecular hydrogel from insulin-loaded triblock PCL-PEG-PCL copolymer and γ-cyclodextrin with sustained-release property. AAPS PharmSciTech, 16(1), 140-149.
130. Chou, F. Y., Lai, J. Y., Shih, C. M., Tsai, M. C., & Lue, S. J. (2013). In vitro biocompatibility of magnetic thermo-responsive nanohydrogel particles of poly (N-isopropylacrylamide-co-acrylic acid) with Fe3O4 cores: effect of particle size and chemical composition. Colloids and Surfaces B: Biointerfaces, 104, 66-74.
131. Cheng, C., Wei, H., Shi, B. X., Cheng, H., Li, C., Gu, Z. W., Cheng, S. X., Zhang, X. Z., & Zhuo, R. X. (2008). Biotinylated thermoresponsive micelle self-assembled from double-hydrophilic block copolymer for drug delivery and tumor target. Biomaterials, 29(4), 497-505.
132. Xu, F. J., Zhu, Y., Liu, F. S., Nie, J., Ma, J., & Yang, W. T. (2010). Comb-shaped conjugates comprising hydroxypropyl cellulose backbones and low-molecular-weight poly (N-isopropylacryamide) side chains for smart hydrogels: synthesis, characterization, and biomedical applications. Bioconjugate chemistry, 21(3), 456-464.
133. Zheng, Y., Wang, B., Liu, M., Jiang, K., Wang, L., & Yu, Y. (2015). Synthesis and characterization of biodegradable thermoresponsive N-maleyl gelatin-co-P (N-isopropylacrylamide) hydrogel cross-linked with Bis-acrylamide for control release. Colloid and Polymer Science, 293(6), 1615-1621.
134. Ren, D., Yi, H., Zhang, H., Xie, W., Wang, W., & Ma, X. (2006). A preliminary study on fabrication of nanoscale fibrous chitosan membranes in situ by biospecific degradation. Journal of membrane science, 280(1), 99-107.
135. Elzatahry, A. A., Eldin, M. S., Soliman, E. A., & Hassan, E. A. (2009). Evaluation of alginate–chitosan bioadhesive beads as a drug delivery system for the controlled release of theophylline. Journal of Applied Polymer Science, 111(5), 2452-2459.
136. Lue, S. J., Chen, B. W., Shih, C. M., Chou, F. Y., Lai, J. Y., & Chiu, W. Y. (2013). Micron-and nano-sized poly (N-isopropylacrylamide-co-acrylic acid) latex syntheses and their applications for controlled drug release. Journal of nanoscience and nanotechnology, 13(8), 5305-5315.
137. Abd El-Rehim, H. A., Swilem, A. E., Klingner, A., Hegazy, E. S. A., & Hamed, A. A. (2013). Developing the potential ophthalmic applications of pilocarpine entrapped into Polyvinylpyrrolidone–poly (acrylic acid) Nanogel dispersions prepared by γ radiation. Biomacromolecules, 14(3), 688-698.
138. Garapati, C., Clarke, B., Zadora, S., Burney, C., Cameron, B. D., Fournier, R., Baugh, R. F., & Boddu, S. H. (2015). Development and characterization of erythrosine nanoparticles with potential for treating sinusitis using photodynamic therapy. Photodiagnosis and photodynamic therapy, 12(1), 9-18.
139. Doorty, K. B., Golubeva, T. A., Gorelov, A. V., Rochev, Y. A., Allen, L. T., Dawson, K. A., Gallagher, W. M., & Keenan, A. K. (2003). Poly (N-isopropylacrylamide) co-polymer films as potential vehicles for delivery of an antimitotic agent to vascular smooth muscle cells. Cardiovascular Pathology, 12(2), 105-110.
140. Hou, W., Miyazaki, S., & Takada, M. (1985). Controlled release of pilocarpine hydrochloride from ethylene-vinyl alcohol copolymer matrices. Chemical and pharmaceutical bulletin, 33(3), 1242-1248.
141. Anumolu, S. S., Singh, Y., Gao, D., Stein, S., & Sinko, P. J. (2009). Design and evaluation of novel fast forming pilocarpine-loaded ocular hydrogels for sustained pharmacological response. Journal of Controlled Release, 137(2), 152-159.
142. Miglior, S., & Bertuzzi, F. (2013). Relationship between intraocular pressure and glaucoma onset and progression. Current opinion in pharmacology, 13(1), 32-35.
143. Izzotti, A., Saccà, S. C., Longobardi, M., & Cartiglia, C. (2009). Sensitivity of ocular anterior chamber tissues to oxidative damage and its relevance to the pathogenesis of glaucoma. Investigative ophthalmology & visual science, 50(11), 5251-5258.
144. Tanito, M., Kaidzu, S., Takai, Y., & Ohira, A. (2012). Status of systemic oxidative stresses in patients with primary open-angle glaucoma and pseudoexfoliation syndrome. PLoS One, 7(11), e49680.
145. Källberg, M. E., Brooks, D. E., Gelatt, K. N., Garcia‐Sanchez, G. A., Szabo, N. J., & Lambrou, G. N. (2007). Endothelin‐1, nitric oxide, and glutamate in the normal and glaucomatous dog eye. Veterinary ophthalmology, 10(s1), 46-52.
146. Kim, S. H., Jun, C. D., Suk, K., Choi, B. J., Lim, H., Park, S., Lee, S. H., Shin, H. Y., Kim, D. K., & Shin, T. Y. (2005). Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicological Sciences, 91(1), 123-131.
147. Kaur, M., Velmurugan, B., Rajamanickam, S., Agarwal, R., & Agarwal, C. (2009). Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, pro-apoptotic and anti-tumorigenic effects against prostate carcinoma xenograft growth in nude mice. Pharmaceutical research, 26(9), 2133-2140.
148. Stoddard, A. R., Koetje, L. R., Mitchell, A. K., Schotanus, M. P., & Ubels, J. L. (2013). Bioavailability of antioxidants applied to stratified human corneal epithelial cells. Journal of Ocular Pharmacology and Therapeutics, 29(7), 681-687.
149. Spizzirri, U. G., Iemma, F., Puoci, F., Cirillo, G., Curcio, M., Parisi, O. I., & Picci, N. (2009). Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecules, 10(7), 1923-1930.
150. Choudhary, S., Zhang, W., Zhou, F., Campbell, G. A., Chan, L. L., Thompson, E. B., & Ansari, N. H. (2002). Cellular lipid peroxidation end-products induce apoptosis in human lens epithelial cells. Free Radical Biology and Medicine, 32(4), 360-369.
151. Vineetha, V. P., Girija, S., Soumya, R. S., & Raghu, K. G. (2014). Polyphenol-rich apple (Malus domestica L.) peel extract attenuates arsenic trioxide induced cardiotoxicity in H9c2 cells via its antioxidant activity. Food & function, 5(3), 502-511.
152. Tusi, S. K., Khalaj, L., Ashabi, G., Kiaei, M., & Khodagholi, F. (2011). Alginate oligosaccharide protects against endoplasmic reticulum-and mitochondrial-mediated apoptotic cell death and oxidative stress. Biomaterials, 32(23), 5438-5458.
153. Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic, S., & Cosic, V. (2001). Method for the measurement of antioxidant activity in human fluids. Journal of clinical pathology, 54(5), 356-361.
154. Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical biochemistry, 126(1), 131-138.
155. Kobayashi, S., & Higashimura, H. (2003). Oxidative polymerization of phenols revisited. Progress in Polymer Science, 28(6), 1015-1048.
156. Spizzirri, U. G., Altimari, I., Puoci, F., Parisi, O. I., Iemma, F., & Picci, N. (2011). Innovative antioxidant thermo-responsive hydrogels by radical grafting of catechin on inulin chain. Carbohydrate polymers, 84(1), 517-523.
157. Panagiota, S., Louloudi, M., & Deligiannakis, Y. (2009). EPR study of phenolic radical stabilization by grafting on SiO2. Chemical Physics Letters, 472(1), 85-89.
158. Lai, J. Y., & Li, Y. T. (2011). Influence of cross-linker concentration on the functionality of carbodiimide cross-linked gelatin membranes for retinal sheet carriers. Journal of Biomaterials Science, Polymer Edition, 22(1-3), 277-295
159. Gao, C., Möhwald, H., & Shen, J. (2005). Thermosensitive poly (allylamine)-g-poly (N-isopropylacrylamide): synthesis, phase separation and particle formation. Polymer, 46(12), 4088-4097.
160. Musa, K. H., Abdullah, A., Kuswandi, B., & Hidayat, M. A. (2013). A novel high throughput method based on the DPPH dry reagent array for determination of antioxidant activity. Food chemistry, 141(4), 4102-4106.
161. Klouda, L., & Mikos, A. G. (2008). Thermoresponsive hydrogels in biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 68(1), 34-45.
162. Schmaljohann, D., Oswald, J., Jørgensen, B., Nitschke, M., Beyerlein, D., & Werner, C. (2003). Thermo-responsive PNiPAAm-g-PEG films for controlled cell detachment. Biomacromolecules, 4(6), 1733-1739.
163. Vert, M. (2005). Aliphatic polyesters: great degradable polymers that cannot do everything. Biomacromolecules, 6(2), 538-546.
164. Artham, T., & Doble, M. (2008). Biodegradation of aliphatic and aromatic polycarbonates. Macromolecular bioscience, 8(1), 14-24.
165. Vandervoort, J., Yoncheva, K., & Ludwig, A. (2004). Influence of the homogenisation procedure on the physicochemical properties of PLGA nanoparticles. Chemical and pharmaceutical bulletin, 52(11), 1273-1279.
166. Spigno, G. I. O. R. G. I. A., Dermiki, M., Pastori, C. H. I. A. R. A., Casanova, F., & Jauregi, P. (2010). Recovery of gallic acid with colloidal gas aphrons generated from a cationic surfactant. Separation and Purification Technology, 71(1), 56-62.
.
167. Aslan, M., Dogan, S., & Kucuksayan, E. (2013). Oxidative stress and potential applications of free radical scavengers in glaucoma. Redox Report, 18(2), 76-87.
168. Flora, S. J. (2009). Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative medicine and cellular longevity, 2(4), 191-206.
169. Izzotti, A., Bagnis, A., & Saccà, S. C. (2006). The role of oxidative stress in glaucoma. Mutation Research/Reviews in Mutation Research, 612(2), 105-114.
170. Siemieniuk, E., Kolodziejczyk, L., & Skrzydlewska, E. (2008). Oxidative modifications of rat liver cell components during Fasciola hepatica infection. Toxicology mechanisms and methods, 18(6), 519-524.
171. Wen, X., Xu, S., Liu, H., Zhang, Q., Liang, H., Yang, C., & Wang, H. (2013). Neurotoxicity induced by bupivacaine via T-type calcium channels in SH-SY5Y cells. PloS one, 8(5), e62942.
172. Zhivotovsky, B., & Orrenius, S. (2011). Calcium and cell death mechanisms: a perspective from the cell death community. Cell calcium, 50(3), 211-221.
173. Kline, R. P., Zablow, L. E. O. N. A. R. D., & Cohen, I. S. (1990). Interaction of intracellular ion buffering with transmembrane-coupled ion transport. The Journal of general physiology, 95(3), 499-522.
174. Leske, M. C., Heijl, A., Hussein, M., Bengtsson, B., Hyman, L., & Komaroff, E. (2003). Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Archives of ophthalmology, 121(1), 48-56.
175. Himber, J., Sallee, V. L., Andermann, G., Bouzoubaa, M., Leclerc, G., & de S antis L. O. U. I. S. (1987). Effects of topically applied falintolol: A new beta-adrenergic antagonist for treatment of glaucoma. Journal of Ocular Pharmacology and Therapeutics, 3(2), 111-120.
176. Abramson, D. H., Chang, S., & Coleman, D. J. (1976). Pilocarpine therapy in glaucoma: effects on anterior chamber depth and lens thickness in patients receiving long-term therapy. Archives of Ophthalmology, 94(6), 914-918.
177. Oshida, E., Matsumoto, Y., & Arai, K. (2010). Free radicals in the aqueous humor of patients with glaucoma. Clinical ophthalmology (Auckland, NZ), 4, 653.
178. Cavet, M. E., Vittitow, J. L., Impagnatiello, F., Ongini, E., & Bastia, E. (2014). Nitric Oxide (NO): An Emerging Target for the Treatment of Glaucoma NO and Glaucoma. Investigative ophthalmology & visual science, 55(8), 5005-5015.
179. Aslan, M., Cort, A., & Yucel, I. (2008). Oxidative and nitrative stress markers in glaucoma. Free Radical Biology and Medicine, 45(4), 367-376.
180. Wolfe, K., Wu, X., & Liu, R. H. (2003). Antioxidant activity of apple peels. Journal of agricultural and food chemistry, 51(3), 609-614.
181. Kang, M. S., Oh, J. S., Kang, I. C., Hong, S. J., & Choi, C. H. (2008). Inhibitory effect of methyl gallate and gallic acid on oral bacteria. The Journal of Microbiology, 46(6), 744-750.
182. Kratz, J. M., Andrighetti-Fröhner, C. R., Leal, P. C., Nunes, R. J., Yunes, R. A., Trybala, E., Bergström, T., Barardi, C. R., & Simões, C. M. O. (2008). Evaluation of anti-HSV-2 activity of gallic acid and pentyl gallate. Biological and Pharmaceutical Bulletin, 31(5), 903-907.
183. Tavano, L., Muzzalupo, R., Picci, N., & de Cindio, B. (2014). Co-encapsulation of antioxidants into niosomal carriers: gastrointestinal release studies for nutraceutical applications. Colloids and Surfaces B: Biointerfaces, 114, 82-88.
184. Raja, I. S., & Fathima, N. N. (2015). A gelatin based antioxidant enriched biomaterial by grafting and saturation: Towards sustained drug delivery from antioxidant matrix. Colloids and Surfaces B: Biointerfaces, 128, 537-543.
185. Yang, J., van Lith, R., Baler, K., Hoshi, R. A., & Ameer, G. A. (2014). A thermoresponsive biodegradable polymer with intrinsic antioxidant properties. Biomacromolecules, 15(11), 3942-3952.
186. van Lith, R., Gregory, E. K., Yang, J., Kibbe, M. R., & Ameer, G. A. (2014). Engineering biodegradable polyester elastomers with antioxidant properties to attenuate oxidative stress in tissues. Biomaterials, 35(28), 8113-8122.
187. Curcio, M., Puoci, F., Iemma, F., Parisi, O. I., Cirillo, G., Spizzirri, U. G., & Picci, N. (2009). Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. Journal of agricultural and food chemistry, 57(13), 5933-5938.
188. Iemma, F., Puoci, F., Curcio, M., Parisi, O. I., Cirillo, G., Spizzirri, U. G., & Picci, N. (2010). Ferulic acid as a comonomer in the synthesis of a novel polymeric chain with biological properties. Journal of applied polymer science, 115(2), 784-789.
189. Senevirathne, M., Jeon, Y. J., Kim, Y. T., Park, P. J., Jung, W. K., Ahn, C. B., & Je, J. Y. (2012). Prevention of oxidative stress in Chang liver cells by gallic acid-grafted-chitosans. Carbohydrate polymers, 87(1), 876-880.
190. Işıklan, N., & Kurşun, F. (2013). Synthesis and characterization of graft copolymer of sodium alginate and poly (itaconic acid) by the redox system. Polymer bulletin, 70(3), 1065-1084.
191. Kaith, B. S., Singha, A. S., Kumar, S., & Kalia, S. (2008). Mercerization of flax fiber improves the mechanical properties of fiber-reinforced composites. International Journal of Polymeric Materials, 57(1), 54-72.
192. Thakur, V. K., Singha, A. S., & Thakur, M. K. (2012). Graft copolymerization of methyl acrylate onto cellulosic biofibers: synthesis, characterization and applications. Journal of Polymers and the Environment, 20(1), 164-174.
193. Xie, W., Xu, P., Liu, Q., & Xue, J. (2002). Graft-copolymerization of methylacrylic acid onto hydroxypropyl chitosan. Polymer Bulletin, 49(1), 47-54.
194. Loo, A. Y., Jain, K., & Darah, I. (2007). Antioxidant and radical scavenging activities of the pyroligneous acid from a mangrove plant, Rhizophora apiculata. Food Chemistry, 104(1), 300-307.
195. Bae, U. J., Park, S. H., Jung, S. Y., Park, B. H., & Chae, S. W. (2015). Hypoglycemic effects of aqueous persimmon leaf extract in a murine model of diabetes. Molecular medicine reports, 12(2), 2547-2554.
196. Suja, K. P., Jayalekshmy, A., & Arumughan, C. (2004). Free radical scavenging behavior of antioxidant compounds of sesame (Sesamum indicum L.) in DPPH• system. Journal of Agricultural and Food Chemistry, 52(4), 912-915.
197. Haseeb, M. T., Hussain, M. A., Yuk, S. H., Bashir, S., & Nauman, M. (2016). Polysaccharides based superabsorbent hydrogel from Linseed: Dynamic swelling, stimuli responsive on–off switching and drug release. Carbohydrate polymers, 136, 750-756.
198. Hedberg, E. L., Shih, C. K., Solchaga, L. A., Caplan, A. I., & Mikos, A. G. (2004). Controlled release of hyaluronan oligomers from biodegradable polymeric microparticle carriers. Journal of controlled release, 100(2), 257-266.
199. Zhang, L., Ma, Z. Z., Che, Y. Y., Li, N., & Tu, P. F. (2011). Protective effect of a new amide compound from puerh tea on human micro-vascular endothelial cell against cytotoxicity induced by hydrogen peroxide. Fitoterapia, 82(2), 267-271.
200. Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 579(1), 200-213.
201. Sarchahi, A. A., Abbasi, N., & Gholipour, M. A. (2012). Effects of an unfixed combination of latanoprost and pilocarpine on the intraocular pressure and pupil size of normal dogs. Veterinary ophthalmology, 15(s1), 64-70.
202. Kao, H. J., Lo, Y. L., Lin, H. R., & Yu, S. P. (2006). Characterization of pilocarpine‐loaded chitosan/Carbopol nanoparticles. Journal of pharmacy and pharmacology, 58(2), 179-186.
203. Ollivier, F. J., Brooks, D. E., Komaromy, A. M., Kallberg, M. E., Andrew, S. E., Sapp, H. L., Sherwood, M. B., & Dawson, W. W. (2003). Corneal thickness and endothelial cell density measured by non-contact specular microscopy and pachymetry in Rhesus macaques (Macaca mulatta) with laser-induced ocular hypertension. Experimental eye research, 76(6), 671-677.
204. Cho, S. W., Kim, J. M., Choi, C. Y., & Park, K. H. (2009). Changes in corneal endothelial cell density in patients with normal-tension glaucoma. Japanese journal of ophthalmology, 53(6), 569-573.
205. Richer, S. P., & Rose, R. C. (1998). Water soluble antioxidants in mammalian aqueous humor: interaction with UVB and hydrogen peroxide. Vision research, 38(19), 2881-2888.
206. Haefliger, I. O., Dettmann, E., Liu, R., Meyer, P., Prünte, C., Messerli, J., & Flammer, J. (1999). Potential role of nitric oxide and endothelin in the pathogenesis of glaucoma. Survey of ophthalmology, 43, S51-S58.
207. Tham, Y. C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., & Cheng, C. Y. (2014). Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology, 121(11), 2081-2090.
208. Sultan, M. B., Mansberger, S. L., & Lee, P. P. (2009). Understanding the importance of IOP variables in glaucoma: a systematic review. Survey of ophthalmology, 54(6), 643-662.
209. Almasieh, M., Wilson, A. M., Morquette, B., Vargas, J. L. C., & Di Polo, A. (2012). The molecular basis of retinal ganglion cell death in glaucoma. Progress in retinal and eye research, 31(2), 152-181.
210. Wygnanski, T., Desatnik, H., Quigley, H. A. & Glovinsky, Y. (1995). Comparison of ganglion cell loss and cone loss in experimental glaucoma. American journal of ophthalmology, 120(2), 184-189.
211. Chou, S. F., Luo, L. J., & Lai, J. Y. (2016). Gallic acid grafting effect on delivery performance and antiglaucoma efficacy of antioxidant-functionalized intracameral pilocarpine carriers. Acta biomaterialia, 38, 116-128.
212. González-Méijome, J. M., Villa-Collar, C., Montés-Micó, R., & Gomes, A. (2007). Asphericity of the anterior human cornea with different corneal diameters. Journal of Cataract & Refractive Surgery, 33(3), 465-473.
213. Ghanem, R. C., Santhiago, M. R., Berti, T., Netto, M. V., & Ghanem, V. C. (2014). Topographic, corneal wavefront, and refractive outcomes 2 years after collagen crosslinking for progressive keratoconus. Cornea, 33(1), 43-48.
214. Marmor, M. F., & Zrenner, E. (1998). Standard for clinical electroretinography (1999 update). Documenta Ophthalmologica, 97(2), 143-156.
215. Moreno, M. C., Campanelli, J., Sande, P., Sáenz, D. A., Sarmiento, M. I. K., & Rosenstein, R. E. (2004). Retinal oxidative stress induced by high intraocular pressure. Free Radical Biology and Medicine, 37(6), 803-812.
216. Tripathi, R. C., & Tripathi, B. J. (1982). Human trabecular endothelium, corneal endothelium, keratocytes, and scleral fibroblasts in primary cell culture. A comparative study of growth characteristics, morphology, and phagocytic activity by light and scanning electron microscopy. Experimental eye research, 35(6), 611-624.
217. Zhou, W., Zhu, X., Zhu, L., Cui, Y. Y., Wang, H., Qi, H., Ren, Q. S., & Chen, H. Z. (2008). Neuroprotection of muscarinic receptor agonist pilocarpine against glutamate-induced apoptosis in retinal neurons. Cellular and molecular neurobiology, 28(2), 263-275.
218. Chan, H. L., & Brown, B. (1999). Multifocal ERG changes in glaucoma. Ophthalmic and Physiological Optics, 19(4), 306-316.
219. Oka, T., Tamada, Y., Nakajima, E., Shearer, T. R., & Azuma, M. (2006). Presence of calpain‐induced proteolysis in retinal degeneration and dysfunction in a rat model of acute ocular hypertension. Journal of neuroscience research, 83(7), 1342-1351.
220. Lee, H. S., Chauhan, S. K., Okanobo, A., Nallasamy, N., & Dana, R. (2011). Therapeutic efficacy of topical epigallocatechin gallate (EGCG) in murine dry eye. Cornea, 30(12), 1465.
221. Matsuo, T., Tsuchida, Y., & Morimoto, N. (2002). Trehalose eye drops in the treatment of dry eye syndrome. Ophthalmology, 109(11), 2024-2029.
222. Kim, E. C., Choi, J. S., & Joo, C. K. (2009). A comparison of vitamin a and cyclosporine a 0.05% eye drops for treatment of dry eye syndrome. American journal of ophthalmology, 147(2), 206-213.
223. Moscovici, B. K., Holzchuh, R., Chiacchio, B. B., Santo, R. M., Shimazaki, J., & Hida, R. Y. (2012). Clinical treatment of dry eye using 0.03% tacrolimus eye drops. Cornea, 31(8), 945-949.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊