|
Reference 1. Li, Y., Rodrigues, J., & Tomás, H. (2012). Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chemical Society Reviews, 41(6), 2193-2221. 2. Olsen, D., Yang, C., Bodo, M., Chang, R., Leigh, S., Baez, J., Carmichael, D., Perälä, M., Hämäläinen, E.R., Jarvinen, M., & Polarek, J. (2003). Recombinant collagen and gelatin for drug delivery. Advanced drug delivery reviews, 55(12), 1547-1567. 3. McDermott, M. K., Chen, T., Williams, C. M., Markley, K. M., & Payne, G. F. (2004). Mechanical properties of biomimetic tissue adhesive based on the microbial transglutaminase-catalyzed crosslinking of gelatin. Biomacromolecules, 5(4), 1270-1279. 4. Pal, K., Banthia, A. K., & Majumdar, D. K. (2007). Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications. Aaps Pharmscitech, 8(1), 21. 5. Peng, H. T., Martineau, L., & Shek, P. N. (2008). Hydrogel-elastomer composite biomaterials: 3. Effects of gelatin molecular weight and type on the preparation and physical properties of interpenetrating polymer networks. Journal of Materials Science: Materials in Medicine, 19(3), 997-1007. 6. Bigi, A., Panzavolta, S., & Rubini, K. (2004). Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials, 25(25), 5675-5680. 7. Kempka, A. P., Souza, S. M. A. G., Ulson de Souza, A. A., Prestes, R. C., & Ogliari, D. (2014). Influence of bloom number and plastifiers on gelatin matrices produced for enzyme immobilization. Brazilian Journal of Chemical Engineering, 31(1), 95-108. 8. Maiden, N. R., Fisk, W., Wachsberger, C., & Byard, R. W. (2015). Ballistics ordnance gelatin-How different concentrations, temperatures and curing times affect calibration results. Journal of forensic and legal medicine, 34, 145-150. 9. Dressler, M., Dombrowski, F., Simon, U., Börnstein, J., Hodoroaba, V. D., Feigl, M., Grunow, S., Gildenhaar, R., & Neumann, M. (2011). Influence of gelatin coatings on compressive strength of porous hydroxyapatite ceramics. Journal of the European Ceramic Society, 31(4), 523-529. 10. Rose, J. B., Pacelli, S., Haj, A. J. E., Dua, H. S., Hopkinson, A., White, L. J., & Rose, F. R. (2014). Gelatin-based materials in ocular tissue engineering. Materials, 7(4), 3106-3135. 11. Lai, J. Y. (2010). Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use. Journal of Materials Science: Materials in Medicine, 21(6), 1899-1911. 12. Lai, J. Y. (2009). The role of bloom index of gelatin on the interaction with retinal pigment epithelial cells. International journal of molecular sciences, 10(8), 3442-3456. 13. Hsiue, G. H., Lai, J. Y., & Lin, P. K. (2002). Absorbable sandwich‐like membrane for retinal‐sheet transplantation. Journal of Biomedical Materials Research Part A, 61(1), 19-25. 14. Lai, J. Y., Lu, P. L., Chen, K. H., Tabata, Y., & Hsiue, G. H. (2006). Effect of charge and molecular weight on the functionality of gelatin carriers for corneal endothelial cell therapy. Biomacromolecules, 7(6), 1836-1844. 15. Lai, J. Y., & Li, Y. T. (2010). Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers. Biomacromolecules, 11(5), 1387-1397. 16. Nahar, M., Mishra, D., Dubey, V., & Jain, N. K. (2008). Development, characterization, and toxicity evaluation of amphotericin B–loaded gelatin nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 4(3), 252-261. 17. Saxena, A., Sachin, K., Bohidar, H. B., & Verma, A. K. (2005). Effect of molecular weight heterogeneity on drug encapsulation efficiency of gelatin nano-particles. Colloids and Surfaces B: Biointerfaces, 45(1), 42-48. 18. Vandervoort, J., & Ludwig, A. (2004). Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. European Journal of Pharmaceutics and Biopharmaceutics, 57(2), 251-261. 19. Lee, Y. C., Millard, J. W., Negvesky, G. J., Butrus, S. I., & Yalkowsky, S. H. (1999). Formulation and in vivo evaluation of ocular insert containing phenylephrine and tropicamide. International journal of pharmaceutics, 182(1), 121-126. 20. Ohya, S., & Matsuda, T. (2005). Poly (N-isopropylacrylamide)(PNIPAM)-grafted gelatin as thermoresponsive three-dimensional artificial extracellular matrix: molecular and formulation parameters vs. cell proliferation potential. Journal of Biomaterials Science, Polymer Edition, 16(7), 809-827. 21. Navaei, A., Truong, D., Heffernan, J., Cutts, J., Brafman, D., Sirianni, R. W., Vernon, B., & Nikkhah, M. (2016). PNIPAAm-based biohybrid injectable hydrogel for cardiac tissue engineering. Acta biomaterialia, 32, 10-23. 22. Curcio, M., Spizzirri, U. G., Iemma, F., Puoci, F., Cirillo, G., Parisi, O. I., & Picci, N. (2010). Grafted thermo-responsive gelatin microspheres as delivery systems in triggered drug release. European Journal of Pharmaceutics and Biopharmaceutics, 76(1), 48-55. 23. Lai, J. Y., & Hsieh, A. C. (2012). A gelatin-g-poly (N-isopropylacrylamide) biodegradable in situ gelling delivery system for the intracameral administration of pilocarpine. Biomaterials, 33(7), 2372-2387. 24. Lai, J. Y. (2013). Biodegradable in situ gelling delivery systems containing pilocarpine as new antiglaucoma formulations: effect of a mercaptoacetic acid/N-isopropylacrylamide molar ratio. Drug design, development and therapy, 7, 1273-1285. 25. Johnson, J. R., & Andrews, F. A. (1970). Lung scleroproteins in age and emphysema. Chest, 57(3), 239-244. 26. Lai, J. Y., Lue, S. J., Cheng, H. Y., & Ma, D. H. K. (2013). Effect of matrix nanostructure on the functionality of carbodiimide cross-linked amniotic membranes as limbal epithelial cell scaffolds. Journal of biomedical nanotechnology, 9(12), 2048-2062. 27. S.S. Lane, P. Burgi, G.S. Milios, M.W. Orchowski, M. Vaughan, E. Schwarte, Comparison of the biomechanical behavior of foldable intraocular lenses, Journal of Cataract & Refractive Surgery 30 (2004) 2397–2402. 28. Lai, J. Y., & Luo, L. J. (2015). Antioxidant gallic acid-functionalized biodegradable in situ gelling copolymers for cytoprotective antiglaucoma drug delivery systems. Biomacromolecules, 16(9), 2950-2963. 29. Husain, S., Kaddour-Djebbar, I., & Abdel-Latif, A. A. (2002). Alterations in arachidonic acid release and phospholipase C-β1 expression in glaucomatous human ciliary muscle cells. Investigative ophthalmology & visual science, 43(4), 1127-1134. 30. Tusi, S. K., Khalaj, L., Ashabi, G., Kiaei, M., & Khodagholi, F. (2011). Alginate oligosaccharide protects against endoplasmic reticulum and mitochondrial-mediated apoptotic cell death and oxidative stress. Biomaterials, 32(23), 5438-5458. 31. Li, J., Lee, S., Choi, S. Y., Lee, S. J., Oh, S. B., Lee, J. H., Chung, S.C., Kim, J.S., Lee, J.H., & Park, K. (2006). Effects of pilocarpine on the secretory acinar cells in human submandibular glands. Life sciences, 79(26), 2441-2447. 32. Lai, J. Y. (2013). Effect of chemical composition on corneal cellular response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid. Materials Science and Engineering: C, 33(7), 3704-3710. 33. Lai, J. Y. (2014). Biofunctionalization of gelatin microcarrier with oxidized hyaluronic acid for corneal keratocyte cultivation. Colloids and Surfaces B: Biointerfaces, 122, 277-286. 34. Lai, J. Y. (2014). Relationship between structure and cytocompatibility of divinyl sulfone cross-linked hyaluronic acid. Carbohydrate polymers, 101, 203-212. 35. Lai, J. Y., Wang, T. P., Li, Y. T., & Tu, I. H. (2012). Synthesis, characterization and ocular biocompatibility of potential keratoprosthetic hydrogels based on photopolymerized poly (2-hydroxyethyl methacrylate)-co-poly (acrylic acid). Journal of Materials Chemistry, 22(5), 1812-1823. 36. Jongjareonrak, A., Benjakul, S., Visessanguan, W., & Tanaka, M. (2006). Skin gelatin from bigeye snapper and brownstripe red snapper: chemical compositions and effect of microbial transglutaminase on gel properties. Food Hydrocolloids, 20(8), 1216-1222. 37. Chandra, M. V., Shamasundar, B. A., & Kumar, P. R. (2013). Visco‐Elastic and Flow Properties of Gelatin from the Bone of Freshwater Fish (Cirrhinus mrigala). Journal of food science, 78(7). 38. Akagündüz, Y., Mosquera, M., Giménez, B., Alemán, A., Montero, P., & Gómez-Guillén, M. C. (2014). Sea bream bones and scales as a source of gelatin and ACE inhibitory peptides. LWT-Food Science and Technology, 55(2), 579-585. 39. Guo, L., Colby, R. H., Lusignan, C. P., & Whitesides, T. H. (2003). Kinetics of triple helix formation in semidilute gelatin solutions. Macromolecules, 36(26), 9999-10008. 40. Liu, H., Wang, B., Barrow, C. J., & Adhikari, B. (2014). Relating the variation of secondary structure of gelatin at fish oil–water interface to adsorption kinetics, dynamic interfacial tension and emulsion stability. Food chemistry, 143, 484-491. 41. Zhu, C. H., Lu, Y., Peng, J., Chen, J. F., & Yu, S. H. (2012). Photothermally Sensitive Poly (N‐isopropylacrylamide)/Graphene Oxide Nanocomposite Hydrogels as Remote Light‐Controlled Liquid Microvalves. Advanced Functional Materials, 22(19), 4017-4022. 42. Mao, L. K., Hwang, J. C., Chang, T. H., Hsieh, C. Y., Tsai, L. S., Chueh, Y. L., Hsu, S.S.H., Lyu, P.C., & Liu, T. J. (2013). Pentacene organic thin-film transistors with solution-based gelatin dielectric. Organic Electronics, 14(4), 1170-1176. 43. Karpinsky-Semper, D., Volmar, C. H., Brothers, S. P., & Slepak, V. Z. (2014). Differential Effects of the Gβ5-RGS7 Complex on Muscarinic M3 Receptor–Induced Ca2+ Influx and Release. Molecular pharmacology, 85(5), 758-768. 44. Ninan, G., Joseph, J., & Abubacker, Z. (2010). Physical, mechanical, and barrier properties of carp and mammalian skin gelatin films. Journal of food science, 75(9). 45. Wang, H., Bongio, M., Farbod, K., Nijhuis, A. W., Van Den Beucken, J., Boerman, O. C., van Hest J. C. M.., Li, Y., Jansem, J. A., & Leeuwenburgh, S. C. G. (2014). Development of injectable organic/inorganic colloidal composite gels made of self-assembling gelatin nanospheres and calcium phosphate nanocrystals. Acta biomaterialia, 10(1), 508-519. 46. Meng, Z. X., Zheng, W., Li, L., & Zheng, Y. F. (2011). Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Materials Chemistry and Physics, 125(3), 606-611. 47. Hsiue, G. H., Guu, J. A., & Cheng, C. C. (2001). Poly (2-hydroxyethyl methacrylate) film as a drug delivery system for pilocarpine. Biomaterials, 22(13), 1763-1769. 48. Jeong, B., Bae, Y. H., & Kim, S. W. (2000). Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. Journal of controlled release, 63(1), 155-163. 49. Joyce, N. C. (2003). Proliferative capacity of the corneal endothelium. Progress in retinal and eye research, 22(3), 359-389. 50. Farahbakhsh, N. A., & Cilluffo, M. C. (1994). Synergistic effect of adrenergic and muscarinic receptor activation on [Ca2+] i in rabbit ciliary body epithelium. The Journal of physiology, 477(2), 215-221. 51. Eto, W., Hirano, K., Hirano, M., Nishimura, J., & Kanaide, H. (2003). Intracellular alkalinization induces Ca2+ influx via non-voltage-operated Ca2+ channels in rat aortic smooth muscle cells. Cell Calcium, 34(6), 477-484. 52. Héon, E., Mathers, W. D., Alward, L. A., Weisenthal, R. W., Sunden, S. L., Fishbaugh, J. A., Taylor C. M., Krachmer, J. H., Sheffield, V. C., & Stone, E. M. (1995). Linkage of posterior polymorphous corneal dystrophy to 20q11. Human molecular genetics, 4(3), 485-488. 53. Lai, J. Y., Lin, P. K., Hsiue, G. H., Cheng, H. Y., Huang, S. J., & Li, Y. T. (2008). Low Bloom strength gelatin as a carrier for potential use in retinal sheet encapsulation and transplantation. Biomacromolecules, 10(2), 310-319. 54. Lai, J. Y., Ma, D. H. K., Cheng, H. Y., Sun, C. C., Huang, S. J., Li, Y. T., & Hsiue, G. H. (2010). Ocular biocompatibility of carbodiimide cross-linked hyaluronic acid hydrogels for cell sheet delivery carriers. Journal of Biomaterials Science, Polymer Edition, 21(3), 359-376. 55. Lai, J. Y. (2014). Effect of chemical composition on corneal tissue response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid. Materials Science and Engineering: C, 34, 334-340. 56. Lu, Y., Li, J., & Wang, G. (2008). In vitro and in vivo evaluation of mPEG-PLA modified liposomes loaded glycyrrhetinic acid. International journal of pharmaceutics, 356(1), 274-281. 57. Calabrese, I., Cavallaro, G., Scialabba, C., Licciardi, M., Merli, M., Sciascia, L., & Liveri, M. L. T. (2013). Montmorillonite nanodevices for the colon metronidazole delivery. International journal of pharmaceutics, 457(1), 224-236. 58. Betsiou, M., Bantsis, G., Zoi, I., & Sikalidis, C. (2012). Adsorption and release of gemcitabine hydrochloride and oxaliplatin by hydroxyapatite. Ceramics International, 38(4), 2719-2724. 59. Tan, H., Ramirez, C. M., Miljkovic, N., Li, H., Rubin, J. P., & Marra, K. G. (2009). Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials, 30(36), 6844-6853. 60. Fitzpatrick, S. D., Jafar Mazumder, M. A., Lasowski, F., Fitzpatrick, L. E., & Sheardown, H. (2010). PNIPAAm-grafted-collagen as an injectable, in situ gelling, bioactive cell delivery scaffold. Biomacromolecules, 11(9), 2261-2267. 61. Wiltsey, C., Christiani, T., Williams, J., Scaramazza, J., Van Sciver, C., Toomer, K., Sheehn, J., Branda, A., Nitzl, A., England, E., Kadlowec, J., Iftode, C., & Vernengo, J. (2015). Thermogelling bioadhesive scaffolds for intervertebral disk tissue engineering: Preliminary in vitro comparison of aldehyde-based versus alginate microparticle-mediated adhesion. Acta biomaterialia, 16, 71-80. 62. Ren, Z., Wang, Y., Ma, S., Duan, S., Yang, X., Gao, P., Zhang, X., & Cai, Q. (2015). Effective bone regeneration using thermosensitive poly (N-isopropylacrylamide) grafted gelatin as injectable carrier for bone mesenchymal stem cells. ACS applied materials & interfaces, 7(34), 19006-19015. 63. Lei, K., Shen, W., Cao, L., Yu, L., & Ding, J. (2015). An injectable thermogel with high radiopacity. Chemical communications, 51(28), 6080-6083. 64. Shen, W., Luan, J., Cao, L., Sun, J., Yu, L., & Ding, J. (2014). Thermogelling polymer–platinum (IV) conjugates for long-term delivery of cisplatin. Biomacromolecules, 16(1), 105-115. 65. Zhang, L., Shen, W., Luan, J., Yang, D., Wei, G., Yu, L., Lu, W., & Ding, J. (2015). Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel. Acta biomaterialia, 23, 271-281. 66. Chen, Y., Li, Y., Shen, W., Li, K., Yu, L., Chen, Q., & Ding, J. (2016). Controlled release of liraglutide using thermogelling polymers in treatment of diabetes. Scientific reports, 6, 31593. 67. Mamedova, N. N., Kotov, N. A., Rogach, A. L., & Studer, J. (2001). Albumin− CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Letters, 1(6), 281-286. 68. Yoshida, R., Sakai, K., Okano, T., & Sakurai, Y. (1992). Surface-modulated skin layers of thermal responsive hydrogels as on-off switches: II. Drug permeation. Journal of Biomaterials Science, Polymer Edition, 3(3), 243-252. 69. Cao, Y., Zhang, C., Shen, W., Cheng, Z., Yu, L. L., & Ping, Q. (2007). Poly (N-isopropylacrylamide)–chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. Journal of controlled release, 120(3), 186-194. 70. Wu, Y., Yao, J., Zhou, J., & Dahmani, F. Z. (2013). Enhanced and sustained topical ocular delivery of cyclosporine A in thermosensitive hyaluronic acid-based in situ forming microgels. International journal of nanomedicine, 8, 3587. 71. Määttä, M., Tervahartiala, T., Harju, M., Airaksinen, J., Autio-Harmainen, H., & Sorsa, T. (2005). Matrix metalloproteinases and their tissue inhibitors in aqueous humor of patients with primary open-angle glaucoma, exfoliation syndrome, and exfoliation glaucoma. Journal of glaucoma, 14(1), 64-69. 72. Robel, I., Subramanian, V., Kuno, M., & Kamat, P. V. (2006). Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. Journal of the American Chemical Society, 128(7), 2385-2393. 73. Sintzel, M. B., Heller, J., Ng, S. Y., Tabatabay, C., Schwach-Abdellaoui, K., & Gurny, R. (1998). In vitro drug release from self-catalyzed poly (ortho ester): case study of 5-fluorouracil. Journal of controlled release, 55(2), 213-218. 74. Katime, I., Novoa, R., & Zuluaga, F. (2001). Swelling kinetics and release studies of theophylline and aminophylline from acrylic acid/n-alkyl methacrylate hydrogels. European Polymer Journal, 37(7), 1465-1471. 75. Hao, Y., Zhao, F., Li, N., Yang, Y., & Li, K. A. (2002). Studies on a high encapsulation of colchicine by a niosome system. International Journal of Pharmaceutics, 244(1), 73-80. 76. Ma, D. H. K., Lai, J. Y., Cheng, H. Y., Tsai, C. C., & Yeh, L. K. (2010). Carbodiimide cross-linked amniotic membranes for cultivation of limbal epithelial cells. Biomaterials, 31(25), 6647-6658. 77. Lai, J. Y., Li, Y. T., Cho, C. H., & Yu, T. C. (2012). Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering. International journal of nanomedicine, 7, 1101. 78. Higuchi, T. (1961). Rate of release of medicaments from ointment bases containing drugs in suspension. Journal of pharmaceutical sciences, 50(10), 874-875. 79. Chi, W., Chen, H., Li, F., Zhu, Y., Yin, W., & Zhuo, Y. (2015). HMGB1 promotes the activation of NLRP3 and caspase-8 inflammasomes via NF-κB pathway in acute glaucoma. Journal of neuroinflammation, 12(1), 137. 80. Harelle, L., Pith, T., Hu, G. H., & Lambla, M. (1994). Chain transfer behavior of fractionated commercial mercaptans in emulsion polymerization of styrene. Journal of applied polymer science, 52(8), 1105-1113. 81. Tjiam, C., & Gomes, V. G. (2014). Optimal operating strategies for emulsion polymerization with chain transfer agent. Industrial & Engineering Chemistry Research, 53(18), 7526-7537. 82. Mlčochová, P., Bystrický, S., Steiner, B., Machová, E., Koóš, M., Velebný, V., & Krčmář, M. (2006). Synthesis and characterization of new biodegradable hyaluronan alkyl derivatives. Biopolymers, 82(1), 74-79. 83. Hou, Y., Matthews, A. R., Smitherman, A. M., Bulick, A. S., Hahn, M. S., Hou, H., Han, A., & Grunlan, M. A. (2008). Thermoresponsive nanocomposite hydrogels with cell-releasing behavior. Biomaterials, 29(22), 3175-3184. 84. Lai, J. Y., Chen, K. H., Hsu, W. M., Hsiue, G. H., & Lee, Y. H. (2006). Bioengineered human corneal endothelium for transplantation. Archives of Ophthalmology, 124(10), 1441-1448. 85. Spori, D. M., Venkataraman, N. V., Tosatti, S. G., Durmaz, F., Spencer, N. D., & Zürcher, S. (2007). Influence of alkyl chain length on phosphate self-assembled monolayers. Langmuir, 23(15), 8053-8060. 86. Kwisnek, L., Kaushik, M., Hoyle, C. E., & Nazarenko, S. (2010). Free Volume, Transport, and Physical Properties of n-Alkyl Derivatized Thiol−Ene Networks: Chain Length Effect. Macromolecules, 43(8), 3859-3867. 87. Wei, H., Zhang, X. Z., Zhou, Y., Cheng, S. X., & Zhuo, R. X. (2006). Self-assembled thermoresponsive micelles of poly (N-isopropylacrylamide-b-methyl methacrylate). Biomaterials, 27(9), 2028-2034. 88. Huber, S., Hutter, N., & Jordan, R. (2008). Effect of end group polarity upon the lower critical solution temperature of poly (2-isopropyl-2-oxazoline). Colloid and Polymer Science, 286(14-15), 1653-1661. 89. Thatiparti, T. R., Tammishetti, S., & Nivasu, M. V. (2010). UV curable polyester polyol acrylate/bentonite nanocomposites: synthesis, characterization, and drug release. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 92(1), 111-119. 90. Jin, R., Lou, B., & Lin, C. (2013). Tyrosinase‐mediated in situ forming hydrogels from biodegradable chondroitin sulfate–tyramine conjugates. Polymer International, 62(3), 353-361. 91. Friess, W., & Schlapp, M. (2002). Release mechanisms from gentamicin loaded poly (lactic‐co‐glycolic acid) (PLGA) microparticles. Journal of pharmaceutical sciences, 91(3), 845-855. 92. Nimesh, S., Aggarwal, A., Kumar, P., Singh, Y., Gupta, K. C., & Chandra, R. (2007). Influence of acyl chain length on transfection mediated by acylated PEI nanoparticles. International journal of pharmaceutics, 337(1), 265-274. 93. Harvey, K. A., Walker, C. L., Pavlina, T. M., Xu, Z., Zaloga, G. P., & Siddiqui, R. A. (2010). Long-chain saturated fatty acids induce pro-inflammatory responses and impact endothelial cell growth. Clinical nutrition, 29(4), 492-500. 94. Lai, J. Y. (2012). Biocompatibility of genipin and glutaraldehyde cross-linked chitosan materials in the anterior chamber of the eye. International journal of molecular sciences, 13(9), 10970-10985. 95. Lai, J. Y., Ma, D. H. K., Lai, M. H., Li, Y. T., Chang, R. J., & Chen, L. M. (2013). Characterization of cross-linked porous gelatin carriers and their interaction with corneal endothelium: biopolymer concentration effect. PLoS One, 8(1), e54058. 96. Bourne, W. M., & McLaren, J. W. (2004). Clinical responses of the corneal endothelium. Experimental eye research, 78(3), 561-572. 97. Bayer, A. U., Neuhardt, T., May, A. C., Martus, P., Maag, K. P., Brodie, S., Lütjen–Drecoll, E., Podos, S. M., & Mittag, T. (2001). Retinal morphology and ERG response in the DBA/2NNia mouse model of angle-closure glaucoma. Investigative ophthalmology & visual science, 42(6), 1258-1265. 98. Osborne, N. N., Ugarte, M., Chao, M., Chidlow, G., Bae, J. H., Wood, J. P. M., & Nash, M. S. (1999). Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Survey of ophthalmology, 43, S102-S128. 99. Zeimer, R., Asrani, S., Zou, S., Quigley, H., & Jampel, H. (1998). Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping: a pilot study. Ophthalmology, 105(2), 224-231. 100. Oharazawa, H., Igarashi, T., Yokota, T., Fujii, H., Suzuki, H., Machide, M., Takahashi, H., Ohta, S., & Ohsawa, I. (2010). Protection of the retina by rapid diffusion of hydrogen: administration of hydrogen-loaded eye drops in retinal ischemia–reperfusion injury. Investigative ophthalmology & visual science, 51(1), 487-492. 101. Le Bourlais, C., Acar, L., Zia, H., Sado, P. A., Needham, T., & Leverge, R. (1998). Ophthalmic drug delivery systems—recent advances. Progress in retinal and eye research, 17(1), 33-58. 102. Coviello, T., Palleschi, A., Grassi, M., Matricardi, P., Bocchinfuso, G., & Alhaique, F. (2005). Scleroglucan: a versatile polysaccharide for modified drug delivery. Molecules, 10(1), 6-33. 103. de la Fuente, M., Raviña, M., Paolicelli, P., Sanchez, A., Seijo, B., & Alonso, M. J. (2010). Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Advanced drug delivery reviews, 62(1), 100-117. 104. Diebold, Y., Jarrín, M., Sáez, V., Carvalho, E. L., Orea, M., Calonge, M., Seijo, B., & Alonso, M. J. (2007). Ocular drug delivery by liposome–chitosan nanoparticle complexes (LCS-NP). Biomaterials, 28(8), 1553-1564. 105. Paolicelli, P., de la Fuente, M., Sánchez, A., Seijo, B., & Alonso, M. J. (2009). Chitosan nanoparticles for drug delivery to the eye. Expert opinion on drug delivery, 6(3), 239-253. 106. Sharma, A. K., Arya, A., Sahoo, P. K., & Majumdar, D. K. (2016). Overview of biopolymers as carriers of antiphlogistic agents for treatment of diverse ocular inflammations. Materials Science and Engineering: C, 67, 779-791. 107. Ullah, H., Wahid, F., Santos, H. A., & Khan, T. (2016). Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydrate polymers, 150, 330-352. 108. Felt, O., Furrer, P., Mayer, J. M., Plazonnet, B., Buri, P., & Gurny, R. (1999). Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. International journal of pharmaceutics, 180(2), 185-193. 109. Jain, K., Suresh Kumar, R., Sood, S., & Dhyanandhan, G. (2013). Betaxolol hydrochloride loaded chitosan nanoparticles for ocular delivery and their anti-glaucoma efficacy. Current drug delivery, 10(5), 493-499. 110. Ali, J., Bhatnagar, A., Kumar, N., & Ali, A. (2014). Chitosan nanoparticles amplify the ocular hypotensive effect of cateolol in rabbits. International journal of biological macromolecules, 65, 479-491. 111. Katiyar, S., Pandit, J., Mondal, R. S., Mishra, A. K., Chuttani, K., Aqil, M., Ali, A., & Sultana, Y. (2014). In situ gelling dorzolamide loaded chitosan nanoparticles for the treatment of glaucoma. Carbohydrate polymers, 102, 117-124. 112. Marques Costa, C., Coli Louvisse de Abreu, L., Pereira dos Santos, E., Augusto Franca Presgrave, O., Trindade Rocha Pierucci, A. P., Rangel Rodrigues, C., Pereira de Sousa, V., Nicoli, S., Ricci Junior, E., & Mendes Cabral, L. (2015). Preparation and evaluation of chitosan submicroparticles containing pilocarpine for glaucoma therapy. Current drug delivery, 12(5), 491-503. 113. Singh, K. H., & Shinde, U. A. (2011). Chitosan nanoparticles for controlled delivery of brimonidine tartrate to the ocular membrane. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 66(8), 594-599. 114. Gaudana, R., Ananthula, H. K., Parenky, A., & Mitra, A. K. (2010). Ocular drug delivery. The AAPS journal, 12(3), 348-360. 115. Wang, Y., Challa, P., Epstein, D. L., & Yuan, F. (2004). Controlled release of ethacrynic acid from poly (lactide-co-glycolide) films for glaucoma treatment. Biomaterials, 25(18), 4279-4285. 116. Geyer, O. R. N. A., Lazar, M. O. S. H. E., Novack, G. D., Shen, D. A. V. I. D., & Eto, C. Y. (1988). Levobunolol compared with timolol: a four-year study. British journal of ophthalmology, 72(12), 892-896. 117. Leung, C. K. S., Yu, M., Weinreb, R. N., Lai, G., Xu, G., & Lam, D. S. C. (2012). Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of retinal nerve fiber layer progression. Ophthalmology, 119(9), 1858-1866. 118. Bao, H., Li, L., Leong, W. C., & Gan, L. H. (2010). Thermo-responsive association of chitosan-graft-poly (N-isopropylacrylamide) in aqueous solutions. The Journal of Physical Chemistry B, 114(32), 10666-10673. 119. Duan, C., Zhang, D., Wang, F., Zheng, D., Jia, L., Feng, F., Liu, Y., Wang, Y., Tian, K., Wang, F., & Zhang, Q. (2011). Chitosan-g-poly (N-isopropylacrylamide) based nanogels for tumor extracellular targeting. International journal of pharmaceutics, 409(1), 252-259. 120. Sun, C. C., Chou, S. F., Lai, J. Y., Cho, C. H., & Lee, C. H. (2016). Dependence of corneal keratocyte adhesion, spreading, and integrin β1 expression on deacetylated chitosan coating. Materials Science and Engineering: C, 63, 222-230. 121. Schuetz, Y. B., Gurny, R., & Jordan, O. (2008). A novel thermoresponsive hydrogel based on chitosan. European Journal of Pharmaceutics and Biopharmaceutics, 68(1), 19-25. 122. Gratieri, T., Gelfuso, G. M., Rocha, E. M., Sarmento, V. H., de Freitas, O., & Lopez, R. F. V. (2010). A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. European Journal of Pharmaceutics and Biopharmaceutics, 75(2), 186-193. 123. Nazar, H., Fatouros, D. G., Van Der Merwe, S. M., Bouropoulos, N., Avgouropoulos, G., Tsibouklis, J., & Roldo, M. (2011). Thermosensitive hydrogels for nasal drug delivery: the formulation and characterisation of systems based on N-trimethyl chitosan chloride. European Journal of Pharmaceutics and Biopharmaceutics, 77(2), 225-232. 124. Li, X., Chen, S., Zhang, B., Li, M., Diao, K., Zhang, Z., Li, J., Xu, Y., Wang, X., & Chen, H. (2012). In situ injectable nano-composite hydrogel composed of curcumin, N, O-carboxymethyl chitosan and oxidized alginate for wound healing application. International journal of pharmaceutics, 437(1), 110-119. 125. Radivojša, M., Grabnar, I., & Grabnar, P. A. (2013). Thermoreversible in situ gelling poloxamer-based systems with chitosan nanocomplexes for prolonged subcutaneous delivery of heparin: Design and in vitro evaluation. European Journal of Pharmaceutical Sciences, 50(1), 93-101. 126. Ruel-Gariépy, E., Shive, M., Bichara, A., Berrada, M., Le Garrec, D., Chenite, A., & Leroux, J. C. (2004). A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. European Journal of Pharmaceutics and Biopharmaceutics, 57(1), 53-63. 127. Lai, J. Y., Li, Y. T., & Wang, T. P. (2010). In vitro response of retinal pigment epithelial cells exposed to chitosan materials prepared with different cross-linkers. International journal of molecular sciences, 11(12), 5256-5272. 128. Tan, K., & Obendorf, S. K. (2007). Fabrication and evaluation of electrospun nanofibrous antimicrobial nylon 6 membranes. Journal of Membrane Science, 305(1), 287-298. 129. Khodaverdi, E., Heidari, Z., Tabassi, S. A. S., Tafaghodi, M., Alibolandi, M., Tekie, F. S. M., Khameneh, B., & Hadizadeh, F. (2015). Injectable supramolecular hydrogel from insulin-loaded triblock PCL-PEG-PCL copolymer and γ-cyclodextrin with sustained-release property. AAPS PharmSciTech, 16(1), 140-149. 130. Chou, F. Y., Lai, J. Y., Shih, C. M., Tsai, M. C., & Lue, S. J. (2013). In vitro biocompatibility of magnetic thermo-responsive nanohydrogel particles of poly (N-isopropylacrylamide-co-acrylic acid) with Fe3O4 cores: effect of particle size and chemical composition. Colloids and Surfaces B: Biointerfaces, 104, 66-74. 131. Cheng, C., Wei, H., Shi, B. X., Cheng, H., Li, C., Gu, Z. W., Cheng, S. X., Zhang, X. Z., & Zhuo, R. X. (2008). Biotinylated thermoresponsive micelle self-assembled from double-hydrophilic block copolymer for drug delivery and tumor target. Biomaterials, 29(4), 497-505. 132. Xu, F. J., Zhu, Y., Liu, F. S., Nie, J., Ma, J., & Yang, W. T. (2010). Comb-shaped conjugates comprising hydroxypropyl cellulose backbones and low-molecular-weight poly (N-isopropylacryamide) side chains for smart hydrogels: synthesis, characterization, and biomedical applications. Bioconjugate chemistry, 21(3), 456-464. 133. Zheng, Y., Wang, B., Liu, M., Jiang, K., Wang, L., & Yu, Y. (2015). Synthesis and characterization of biodegradable thermoresponsive N-maleyl gelatin-co-P (N-isopropylacrylamide) hydrogel cross-linked with Bis-acrylamide for control release. Colloid and Polymer Science, 293(6), 1615-1621. 134. Ren, D., Yi, H., Zhang, H., Xie, W., Wang, W., & Ma, X. (2006). A preliminary study on fabrication of nanoscale fibrous chitosan membranes in situ by biospecific degradation. Journal of membrane science, 280(1), 99-107. 135. Elzatahry, A. A., Eldin, M. S., Soliman, E. A., & Hassan, E. A. (2009). Evaluation of alginate–chitosan bioadhesive beads as a drug delivery system for the controlled release of theophylline. Journal of Applied Polymer Science, 111(5), 2452-2459. 136. Lue, S. J., Chen, B. W., Shih, C. M., Chou, F. Y., Lai, J. Y., & Chiu, W. Y. (2013). Micron-and nano-sized poly (N-isopropylacrylamide-co-acrylic acid) latex syntheses and their applications for controlled drug release. Journal of nanoscience and nanotechnology, 13(8), 5305-5315. 137. Abd El-Rehim, H. A., Swilem, A. E., Klingner, A., Hegazy, E. S. A., & Hamed, A. A. (2013). Developing the potential ophthalmic applications of pilocarpine entrapped into Polyvinylpyrrolidone–poly (acrylic acid) Nanogel dispersions prepared by γ radiation. Biomacromolecules, 14(3), 688-698. 138. Garapati, C., Clarke, B., Zadora, S., Burney, C., Cameron, B. D., Fournier, R., Baugh, R. F., & Boddu, S. H. (2015). Development and characterization of erythrosine nanoparticles with potential for treating sinusitis using photodynamic therapy. Photodiagnosis and photodynamic therapy, 12(1), 9-18. 139. Doorty, K. B., Golubeva, T. A., Gorelov, A. V., Rochev, Y. A., Allen, L. T., Dawson, K. A., Gallagher, W. M., & Keenan, A. K. (2003). Poly (N-isopropylacrylamide) co-polymer films as potential vehicles for delivery of an antimitotic agent to vascular smooth muscle cells. Cardiovascular Pathology, 12(2), 105-110. 140. Hou, W., Miyazaki, S., & Takada, M. (1985). Controlled release of pilocarpine hydrochloride from ethylene-vinyl alcohol copolymer matrices. Chemical and pharmaceutical bulletin, 33(3), 1242-1248. 141. Anumolu, S. S., Singh, Y., Gao, D., Stein, S., & Sinko, P. J. (2009). Design and evaluation of novel fast forming pilocarpine-loaded ocular hydrogels for sustained pharmacological response. Journal of Controlled Release, 137(2), 152-159. 142. Miglior, S., & Bertuzzi, F. (2013). Relationship between intraocular pressure and glaucoma onset and progression. Current opinion in pharmacology, 13(1), 32-35. 143. Izzotti, A., Saccà, S. C., Longobardi, M., & Cartiglia, C. (2009). Sensitivity of ocular anterior chamber tissues to oxidative damage and its relevance to the pathogenesis of glaucoma. Investigative ophthalmology & visual science, 50(11), 5251-5258. 144. Tanito, M., Kaidzu, S., Takai, Y., & Ohira, A. (2012). Status of systemic oxidative stresses in patients with primary open-angle glaucoma and pseudoexfoliation syndrome. PLoS One, 7(11), e49680. 145. Källberg, M. E., Brooks, D. E., Gelatt, K. N., Garcia‐Sanchez, G. A., Szabo, N. J., & Lambrou, G. N. (2007). Endothelin‐1, nitric oxide, and glutamate in the normal and glaucomatous dog eye. Veterinary ophthalmology, 10(s1), 46-52. 146. Kim, S. H., Jun, C. D., Suk, K., Choi, B. J., Lim, H., Park, S., Lee, S. H., Shin, H. Y., Kim, D. K., & Shin, T. Y. (2005). Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicological Sciences, 91(1), 123-131. 147. Kaur, M., Velmurugan, B., Rajamanickam, S., Agarwal, R., & Agarwal, C. (2009). Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, pro-apoptotic and anti-tumorigenic effects against prostate carcinoma xenograft growth in nude mice. Pharmaceutical research, 26(9), 2133-2140. 148. Stoddard, A. R., Koetje, L. R., Mitchell, A. K., Schotanus, M. P., & Ubels, J. L. (2013). Bioavailability of antioxidants applied to stratified human corneal epithelial cells. Journal of Ocular Pharmacology and Therapeutics, 29(7), 681-687. 149. Spizzirri, U. G., Iemma, F., Puoci, F., Cirillo, G., Curcio, M., Parisi, O. I., & Picci, N. (2009). Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecules, 10(7), 1923-1930. 150. Choudhary, S., Zhang, W., Zhou, F., Campbell, G. A., Chan, L. L., Thompson, E. B., & Ansari, N. H. (2002). Cellular lipid peroxidation end-products induce apoptosis in human lens epithelial cells. Free Radical Biology and Medicine, 32(4), 360-369. 151. Vineetha, V. P., Girija, S., Soumya, R. S., & Raghu, K. G. (2014). Polyphenol-rich apple (Malus domestica L.) peel extract attenuates arsenic trioxide induced cardiotoxicity in H9c2 cells via its antioxidant activity. Food & function, 5(3), 502-511. 152. Tusi, S. K., Khalaj, L., Ashabi, G., Kiaei, M., & Khodagholi, F. (2011). Alginate oligosaccharide protects against endoplasmic reticulum-and mitochondrial-mediated apoptotic cell death and oxidative stress. Biomaterials, 32(23), 5438-5458. 153. Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic, S., & Cosic, V. (2001). Method for the measurement of antioxidant activity in human fluids. Journal of clinical pathology, 54(5), 356-361. 154. Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical biochemistry, 126(1), 131-138. 155. Kobayashi, S., & Higashimura, H. (2003). Oxidative polymerization of phenols revisited. Progress in Polymer Science, 28(6), 1015-1048. 156. Spizzirri, U. G., Altimari, I., Puoci, F., Parisi, O. I., Iemma, F., & Picci, N. (2011). Innovative antioxidant thermo-responsive hydrogels by radical grafting of catechin on inulin chain. Carbohydrate polymers, 84(1), 517-523. 157. Panagiota, S., Louloudi, M., & Deligiannakis, Y. (2009). EPR study of phenolic radical stabilization by grafting on SiO2. Chemical Physics Letters, 472(1), 85-89. 158. Lai, J. Y., & Li, Y. T. (2011). Influence of cross-linker concentration on the functionality of carbodiimide cross-linked gelatin membranes for retinal sheet carriers. Journal of Biomaterials Science, Polymer Edition, 22(1-3), 277-295 159. Gao, C., Möhwald, H., & Shen, J. (2005). Thermosensitive poly (allylamine)-g-poly (N-isopropylacrylamide): synthesis, phase separation and particle formation. Polymer, 46(12), 4088-4097. 160. Musa, K. H., Abdullah, A., Kuswandi, B., & Hidayat, M. A. (2013). A novel high throughput method based on the DPPH dry reagent array for determination of antioxidant activity. Food chemistry, 141(4), 4102-4106. 161. Klouda, L., & Mikos, A. G. (2008). Thermoresponsive hydrogels in biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 68(1), 34-45. 162. Schmaljohann, D., Oswald, J., Jørgensen, B., Nitschke, M., Beyerlein, D., & Werner, C. (2003). Thermo-responsive PNiPAAm-g-PEG films for controlled cell detachment. Biomacromolecules, 4(6), 1733-1739. 163. Vert, M. (2005). Aliphatic polyesters: great degradable polymers that cannot do everything. Biomacromolecules, 6(2), 538-546. 164. Artham, T., & Doble, M. (2008). Biodegradation of aliphatic and aromatic polycarbonates. Macromolecular bioscience, 8(1), 14-24. 165. Vandervoort, J., Yoncheva, K., & Ludwig, A. (2004). Influence of the homogenisation procedure on the physicochemical properties of PLGA nanoparticles. Chemical and pharmaceutical bulletin, 52(11), 1273-1279. 166. Spigno, G. I. O. R. G. I. A., Dermiki, M., Pastori, C. H. I. A. R. A., Casanova, F., & Jauregi, P. (2010). Recovery of gallic acid with colloidal gas aphrons generated from a cationic surfactant. Separation and Purification Technology, 71(1), 56-62. . 167. Aslan, M., Dogan, S., & Kucuksayan, E. (2013). Oxidative stress and potential applications of free radical scavengers in glaucoma. Redox Report, 18(2), 76-87. 168. Flora, S. J. (2009). Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative medicine and cellular longevity, 2(4), 191-206. 169. Izzotti, A., Bagnis, A., & Saccà, S. C. (2006). The role of oxidative stress in glaucoma. Mutation Research/Reviews in Mutation Research, 612(2), 105-114. 170. Siemieniuk, E., Kolodziejczyk, L., & Skrzydlewska, E. (2008). Oxidative modifications of rat liver cell components during Fasciola hepatica infection. Toxicology mechanisms and methods, 18(6), 519-524. 171. Wen, X., Xu, S., Liu, H., Zhang, Q., Liang, H., Yang, C., & Wang, H. (2013). Neurotoxicity induced by bupivacaine via T-type calcium channels in SH-SY5Y cells. PloS one, 8(5), e62942. 172. Zhivotovsky, B., & Orrenius, S. (2011). Calcium and cell death mechanisms: a perspective from the cell death community. Cell calcium, 50(3), 211-221. 173. Kline, R. P., Zablow, L. E. O. N. A. R. D., & Cohen, I. S. (1990). Interaction of intracellular ion buffering with transmembrane-coupled ion transport. The Journal of general physiology, 95(3), 499-522. 174. Leske, M. C., Heijl, A., Hussein, M., Bengtsson, B., Hyman, L., & Komaroff, E. (2003). Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Archives of ophthalmology, 121(1), 48-56. 175. Himber, J., Sallee, V. L., Andermann, G., Bouzoubaa, M., Leclerc, G., & de S antis L. O. U. I. S. (1987). Effects of topically applied falintolol: A new beta-adrenergic antagonist for treatment of glaucoma. Journal of Ocular Pharmacology and Therapeutics, 3(2), 111-120. 176. Abramson, D. H., Chang, S., & Coleman, D. J. (1976). Pilocarpine therapy in glaucoma: effects on anterior chamber depth and lens thickness in patients receiving long-term therapy. Archives of Ophthalmology, 94(6), 914-918. 177. Oshida, E., Matsumoto, Y., & Arai, K. (2010). Free radicals in the aqueous humor of patients with glaucoma. Clinical ophthalmology (Auckland, NZ), 4, 653. 178. Cavet, M. E., Vittitow, J. L., Impagnatiello, F., Ongini, E., & Bastia, E. (2014). Nitric Oxide (NO): An Emerging Target for the Treatment of Glaucoma NO and Glaucoma. Investigative ophthalmology & visual science, 55(8), 5005-5015. 179. Aslan, M., Cort, A., & Yucel, I. (2008). Oxidative and nitrative stress markers in glaucoma. Free Radical Biology and Medicine, 45(4), 367-376. 180. Wolfe, K., Wu, X., & Liu, R. H. (2003). Antioxidant activity of apple peels. Journal of agricultural and food chemistry, 51(3), 609-614. 181. Kang, M. S., Oh, J. S., Kang, I. C., Hong, S. J., & Choi, C. H. (2008). Inhibitory effect of methyl gallate and gallic acid on oral bacteria. The Journal of Microbiology, 46(6), 744-750. 182. Kratz, J. M., Andrighetti-Fröhner, C. R., Leal, P. C., Nunes, R. J., Yunes, R. A., Trybala, E., Bergström, T., Barardi, C. R., & Simões, C. M. O. (2008). Evaluation of anti-HSV-2 activity of gallic acid and pentyl gallate. Biological and Pharmaceutical Bulletin, 31(5), 903-907. 183. Tavano, L., Muzzalupo, R., Picci, N., & de Cindio, B. (2014). Co-encapsulation of antioxidants into niosomal carriers: gastrointestinal release studies for nutraceutical applications. Colloids and Surfaces B: Biointerfaces, 114, 82-88. 184. Raja, I. S., & Fathima, N. N. (2015). A gelatin based antioxidant enriched biomaterial by grafting and saturation: Towards sustained drug delivery from antioxidant matrix. Colloids and Surfaces B: Biointerfaces, 128, 537-543. 185. Yang, J., van Lith, R., Baler, K., Hoshi, R. A., & Ameer, G. A. (2014). A thermoresponsive biodegradable polymer with intrinsic antioxidant properties. Biomacromolecules, 15(11), 3942-3952. 186. van Lith, R., Gregory, E. K., Yang, J., Kibbe, M. R., & Ameer, G. A. (2014). Engineering biodegradable polyester elastomers with antioxidant properties to attenuate oxidative stress in tissues. Biomaterials, 35(28), 8113-8122. 187. Curcio, M., Puoci, F., Iemma, F., Parisi, O. I., Cirillo, G., Spizzirri, U. G., & Picci, N. (2009). Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. Journal of agricultural and food chemistry, 57(13), 5933-5938. 188. Iemma, F., Puoci, F., Curcio, M., Parisi, O. I., Cirillo, G., Spizzirri, U. G., & Picci, N. (2010). Ferulic acid as a comonomer in the synthesis of a novel polymeric chain with biological properties. Journal of applied polymer science, 115(2), 784-789. 189. Senevirathne, M., Jeon, Y. J., Kim, Y. T., Park, P. J., Jung, W. K., Ahn, C. B., & Je, J. Y. (2012). Prevention of oxidative stress in Chang liver cells by gallic acid-grafted-chitosans. Carbohydrate polymers, 87(1), 876-880. 190. Işıklan, N., & Kurşun, F. (2013). Synthesis and characterization of graft copolymer of sodium alginate and poly (itaconic acid) by the redox system. Polymer bulletin, 70(3), 1065-1084. 191. Kaith, B. S., Singha, A. S., Kumar, S., & Kalia, S. (2008). Mercerization of flax fiber improves the mechanical properties of fiber-reinforced composites. International Journal of Polymeric Materials, 57(1), 54-72. 192. Thakur, V. K., Singha, A. S., & Thakur, M. K. (2012). Graft copolymerization of methyl acrylate onto cellulosic biofibers: synthesis, characterization and applications. Journal of Polymers and the Environment, 20(1), 164-174. 193. Xie, W., Xu, P., Liu, Q., & Xue, J. (2002). Graft-copolymerization of methylacrylic acid onto hydroxypropyl chitosan. Polymer Bulletin, 49(1), 47-54. 194. Loo, A. Y., Jain, K., & Darah, I. (2007). Antioxidant and radical scavenging activities of the pyroligneous acid from a mangrove plant, Rhizophora apiculata. Food Chemistry, 104(1), 300-307. 195. Bae, U. J., Park, S. H., Jung, S. Y., Park, B. H., & Chae, S. W. (2015). Hypoglycemic effects of aqueous persimmon leaf extract in a murine model of diabetes. Molecular medicine reports, 12(2), 2547-2554. 196. Suja, K. P., Jayalekshmy, A., & Arumughan, C. (2004). Free radical scavenging behavior of antioxidant compounds of sesame (Sesamum indicum L.) in DPPH• system. Journal of Agricultural and Food Chemistry, 52(4), 912-915. 197. Haseeb, M. T., Hussain, M. A., Yuk, S. H., Bashir, S., & Nauman, M. (2016). Polysaccharides based superabsorbent hydrogel from Linseed: Dynamic swelling, stimuli responsive on–off switching and drug release. Carbohydrate polymers, 136, 750-756. 198. Hedberg, E. L., Shih, C. K., Solchaga, L. A., Caplan, A. I., & Mikos, A. G. (2004). Controlled release of hyaluronan oligomers from biodegradable polymeric microparticle carriers. Journal of controlled release, 100(2), 257-266. 199. Zhang, L., Ma, Z. Z., Che, Y. Y., Li, N., & Tu, P. F. (2011). Protective effect of a new amide compound from puerh tea on human micro-vascular endothelial cell against cytotoxicity induced by hydrogen peroxide. Fitoterapia, 82(2), 267-271. 200. Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 579(1), 200-213. 201. Sarchahi, A. A., Abbasi, N., & Gholipour, M. A. (2012). Effects of an unfixed combination of latanoprost and pilocarpine on the intraocular pressure and pupil size of normal dogs. Veterinary ophthalmology, 15(s1), 64-70. 202. Kao, H. J., Lo, Y. L., Lin, H. R., & Yu, S. P. (2006). Characterization of pilocarpine‐loaded chitosan/Carbopol nanoparticles. Journal of pharmacy and pharmacology, 58(2), 179-186. 203. Ollivier, F. J., Brooks, D. E., Komaromy, A. M., Kallberg, M. E., Andrew, S. E., Sapp, H. L., Sherwood, M. B., & Dawson, W. W. (2003). Corneal thickness and endothelial cell density measured by non-contact specular microscopy and pachymetry in Rhesus macaques (Macaca mulatta) with laser-induced ocular hypertension. Experimental eye research, 76(6), 671-677. 204. Cho, S. W., Kim, J. M., Choi, C. Y., & Park, K. H. (2009). Changes in corneal endothelial cell density in patients with normal-tension glaucoma. Japanese journal of ophthalmology, 53(6), 569-573. 205. Richer, S. P., & Rose, R. C. (1998). Water soluble antioxidants in mammalian aqueous humor: interaction with UVB and hydrogen peroxide. Vision research, 38(19), 2881-2888. 206. Haefliger, I. O., Dettmann, E., Liu, R., Meyer, P., Prünte, C., Messerli, J., & Flammer, J. (1999). Potential role of nitric oxide and endothelin in the pathogenesis of glaucoma. Survey of ophthalmology, 43, S51-S58. 207. Tham, Y. C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., & Cheng, C. Y. (2014). Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology, 121(11), 2081-2090. 208. Sultan, M. B., Mansberger, S. L., & Lee, P. P. (2009). Understanding the importance of IOP variables in glaucoma: a systematic review. Survey of ophthalmology, 54(6), 643-662. 209. Almasieh, M., Wilson, A. M., Morquette, B., Vargas, J. L. C., & Di Polo, A. (2012). The molecular basis of retinal ganglion cell death in glaucoma. Progress in retinal and eye research, 31(2), 152-181. 210. Wygnanski, T., Desatnik, H., Quigley, H. A. & Glovinsky, Y. (1995). Comparison of ganglion cell loss and cone loss in experimental glaucoma. American journal of ophthalmology, 120(2), 184-189. 211. Chou, S. F., Luo, L. J., & Lai, J. Y. (2016). Gallic acid grafting effect on delivery performance and antiglaucoma efficacy of antioxidant-functionalized intracameral pilocarpine carriers. Acta biomaterialia, 38, 116-128. 212. González-Méijome, J. M., Villa-Collar, C., Montés-Micó, R., & Gomes, A. (2007). Asphericity of the anterior human cornea with different corneal diameters. Journal of Cataract & Refractive Surgery, 33(3), 465-473. 213. Ghanem, R. C., Santhiago, M. R., Berti, T., Netto, M. V., & Ghanem, V. C. (2014). Topographic, corneal wavefront, and refractive outcomes 2 years after collagen crosslinking for progressive keratoconus. Cornea, 33(1), 43-48. 214. Marmor, M. F., & Zrenner, E. (1998). Standard for clinical electroretinography (1999 update). Documenta Ophthalmologica, 97(2), 143-156. 215. Moreno, M. C., Campanelli, J., Sande, P., Sáenz, D. A., Sarmiento, M. I. K., & Rosenstein, R. E. (2004). Retinal oxidative stress induced by high intraocular pressure. Free Radical Biology and Medicine, 37(6), 803-812. 216. Tripathi, R. C., & Tripathi, B. J. (1982). Human trabecular endothelium, corneal endothelium, keratocytes, and scleral fibroblasts in primary cell culture. A comparative study of growth characteristics, morphology, and phagocytic activity by light and scanning electron microscopy. Experimental eye research, 35(6), 611-624. 217. Zhou, W., Zhu, X., Zhu, L., Cui, Y. Y., Wang, H., Qi, H., Ren, Q. S., & Chen, H. Z. (2008). Neuroprotection of muscarinic receptor agonist pilocarpine against glutamate-induced apoptosis in retinal neurons. Cellular and molecular neurobiology, 28(2), 263-275. 218. Chan, H. L., & Brown, B. (1999). Multifocal ERG changes in glaucoma. Ophthalmic and Physiological Optics, 19(4), 306-316. 219. Oka, T., Tamada, Y., Nakajima, E., Shearer, T. R., & Azuma, M. (2006). Presence of calpain‐induced proteolysis in retinal degeneration and dysfunction in a rat model of acute ocular hypertension. Journal of neuroscience research, 83(7), 1342-1351. 220. Lee, H. S., Chauhan, S. K., Okanobo, A., Nallasamy, N., & Dana, R. (2011). Therapeutic efficacy of topical epigallocatechin gallate (EGCG) in murine dry eye. Cornea, 30(12), 1465. 221. Matsuo, T., Tsuchida, Y., & Morimoto, N. (2002). Trehalose eye drops in the treatment of dry eye syndrome. Ophthalmology, 109(11), 2024-2029. 222. Kim, E. C., Choi, J. S., & Joo, C. K. (2009). A comparison of vitamin a and cyclosporine a 0.05% eye drops for treatment of dry eye syndrome. American journal of ophthalmology, 147(2), 206-213. 223. Moscovici, B. K., Holzchuh, R., Chiacchio, B. B., Santo, R. M., Shimazaki, J., & Hida, R. Y. (2012). Clinical treatment of dry eye using 0.03% tacrolimus eye drops. Cornea, 31(8), 945-949.
|