跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 06:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游上輝
論文名稱:乾燥混合型益生菌醱酵飼料對白肉雞生長性狀及骨骼性狀之影響
論文名稱(外文):Effects of dried mixture probiotics fermented feed on growth performance andbone characteristics in broilers
指導教授:陳國隆陳國隆引用關係謝佳雯謝佳雯引用關係
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:動物科學系研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
中文關鍵詞:肉雞益生菌醱酵枯草桿菌乳酸菌乾燥骨骼性狀
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1179
  • 評分評分:
  • 下載下載:220
  • 收藏至我的研究室書目清單書目收藏:2
本研究目的有二:第一部分,第一階段利用Bacillus subtilis var. natto N21 (Bac)將飼料進行分解後,於第二階段單獨使用Lactobacillus sporogenes L12 (Lac)或同時添加Lactobacillus sporogenes L12 (Lac)及Saccharomyces cerevisiae Y10 (Sac)進行醱酵,醱酵完成後予以乾燥。除了進行飼料成分分析外,並以動物試驗瞭解乾燥醱酵飼料促進雞隻生長之機制。第二部分,評估以乾燥醱酵飼料對於雞隻骨骼性狀之影響。第一部分:0-21及21-39日齡飼糧中,醱酵飼料組水分顯著高於對照組及乾燥組(P<0.05),乾物質則為顯著最低(P<0.05)。而在各處理組飼料乾物質粗蛋白、能量、灰分、鈣及總磷,各組間並沒有顯著差異(P>0.05)。0-21及21-39日齡之飼料中,醱酵飼料及乾燥飼料pH值可達約pH 4.7。有機酸分析方面,醱酵飼料及乾燥飼料之乳酸含量顯著高於對照組(P<0.05)。只有醱酵飼料可檢測出醋酸,對照組及乾燥飼料則低於檢測值。菌數方面,對照組0-21及21-39日齡飼料中Bac、Sac及Lac菌數分別約為3.3 log CFU/g 飼料。無論是醱酵飼料組或是乾燥飼料組,Bac可達6.49-6.54 log CFU/g 飼料,Lac皆可達8.08-8.32 log CFU/g 飼料。在Sac方面,0-21及21-39日齡FBLS組菌數則有7.20-7.28 log CFU/g 飼料,在經過乾燥後,0-21日齡剩下5.23 log CFU/g 飼料,21-39日齡則剩下6.18 log CFU/g 飼料。飼料經過蛋白質二維電泳分析後發現Glycinin及β-Conglycinin這兩項大豆抗營養物質經過醱酵或醱酵後乾燥有降解之現象。試驗一:以160隻0日齡商業愛拔益加雄肉雞作為試驗動物,逢機分置於對照組、Bac+Lac醱酵飼料組(FBL)、Bac+Lac&Sac醱酵飼料組(FBLS)、飲水中添加Bac+Lac組(WBL)及飲水中添加Bac+Lac&Sac組(WBLS),每處理四重複,每重複8隻,試驗期間21天,飼糧及飲水採任食。結果顯示,醱酵飼料組在0-21日齡體重及增重顯著較對照組高(P<0.05),而採食量以FBL組顯著最高,其次為FBLS組,而益生菌水組亦均顯著高於對照組(P<0.05)。醱酵飼料組之FCR表現均較對照組佳(P<0.05)。試驗二:以180隻0日齡商業愛拔益加雄肉雞作為試驗動物,逢機分置於對照組、FBL組、FBLS組、乾燥Bac+Lac醱酵飼料(DFBL)及乾燥Bac+Lac&Sac醱酵飼料組(DFBLS),每處理三重複,每重複12隻,試驗期間39天,飼糧及飲水採任食。結果顯示,FBL及FBLS組之雞隻於0-21、21-39及0-39日齡時,飼料採食量及增重顯著高於對照組,而餵飼DFBL及DFBLS飼料可顯著改善21-39及0-39日齡雞隻之增重及FCR。FBL組雞隻39日齡時之相對肝臟重顯著較對照組高,而FBLS及DFBL組雞隻之相對腺胃砂囊重顯著最高。FBLS組十二指腸pH顯著較對照組高(P<0.05),對照組盲腸pH顯著低於其他組(P<0.05),而在結直腸方面,所有處理組皆顯著高於對照組(P<0.05)。對照組與FBL組及DFBL組各消化道中的乳酸桿菌及大腸桿菌樣菌皆沒有顯著差異(P>0.05)。第二部分:試驗一,以144隻0日齡商業愛拔益加雄肉雞作為試驗動物,逢機分置於對照組、FBL組及Bac+Sac醱酵飼料組(FBS),每處理組4重複,每重複12隻。以巴達利式育雛器飼養21天。試驗期間飼料及飲水為任飼。結果顯示,FBL組之體重及增重顯著較對照組及FBS組高(P<0.05),而FI及FCR於各組間無顯著差異。FBL組及FBS組可較對照組顯著提升21日齡脛骨長度及重量,並增加骨骼中灰分、鈣、磷含量(P<0.05),銅含量則顯著降低(P<0.05)。FBS組顯著較對照組降低錳含量(P<0.05)。FBL可顯著較對照組改善破裂強度(P<0.05)。FBL組及FBS組可顯著較對照組提升21日齡血液中磷含量(P<0.05),但對於鈣及鹼性磷酸酶並沒有影響(P>0.05)。試驗二,以108隻0日齡商業愛拔益加雄肉雞作為試驗動物,逢機分置於對照組、FBL組及DFBL組,每處理組3重複,每重複12隻。0-21天以巴達利式育雛器飼養,21-39天則飼養於長3.0 m × 寬1.7 m之地面欄。試驗期間飼料及飲水為任飼。DFBL組與FBL組均可顯著提升0-39日齡體重(P<0.05)。。FBL組及DFBL組蹠骨長度、灰分、鈣、磷及鋅含量顯著高於對照組(P<0.05)。FBL組蹠骨破裂強度顯著較對照組高(P<0.05)。經由切片可明顯看出對照組骨小樑分佈較多。而在FBL組及DFBL組骨小樑較少,且骨小樑間含有較多之透明軟骨。在碳酸酐酶mRNA表現量方面,對照組表現量為116 %,FBL組為127%,而DFBL組為123%。處理組表現量有高於對照組的現象。總結以上結果得知,益生菌液態培養後添加於飲水中,並不能與醱酵飼料組有同樣促進生長性狀之功效,意味著飼料必須經過醱酵才能有促進生長之效,且第二階段只需使用乳酸菌即有功效。醱酵飼料經乾燥後仍可促進雞隻體增重及改善飼料效率,並可改善骨骼性狀,顯示乾燥混合型益生菌醱酵飼料具有商業開發之價值。
目錄
頁次
I. 中文摘要…………………………………………………………….. 1
II. 前言………………………………………………………................. 4
III. 文獻探討…………………………………………………………... 5
一、益生菌……………………………………………………………. 5
(一) 定義…………………………………………………………….. 5
(二) 雞隻常用之益生菌…………………………………………….. 10
A. Bacillus………………………………………............................ 10
B. Yeast……………………………………………………………. 10
C. Lactobacillus…………………………………............................ 11
二、益生菌對雞隻之影響……………………………….................... 12
(一) 生長性狀………………………………………………………. 12
(二) 骨骼性狀………………………………………………………. 18
(三) 腸道菌相………………………………………………………. 18
三、醱酵與蛋白質體…………………………………….................... 19
IV. 試驗部分…………………………………………………............... 21
第一部分:乾燥混合型益生菌醱酵飼料製備及對白肉雞生長性狀之影響…………………………………………………... 21
前言……………………………………………………... 21
材料與方法………………………………..…................ 22
結果與討論………………………....………………….. 30
第二部分:混合型益生菌醱酵飼料對白肉雞骨骼性狀之影響........ 47
前言…………………………………………………….. 47
材料與方法……………………..……………................ 47
結果與討論………………..…………………................ 52
V. 結論…………………………………………………………………. 62
VI. 參考文獻…………………………………………………………... 63
VII. 英文摘要………………………………………………………….. 71


表次
頁次
表1目前作為益生菌之微生物種類………………………………….. 6
續表1目前作為益生菌之微生物種類……………………………….. 7
表2美國、中國符合益生菌安全的益生菌種類…………………….. 8
續表2美國、中國符合益生菌安全的益生菌種類………………….. 9
表3添加益生菌對肉雞生長性能之影響…………………………….. 15
續表3添加益生菌對肉雞生長性能之影響………………………….. 17
表1-1基礎飼糧組成…………………………………………………... 37
表1-2醱酵飼料之一般分析................................................................... 38
表1-3醱酵飼料之理化性狀…………………………………………... 39
表1-4乾燥混合型益生菌醱酵飼料蛋白點分析結果………………... 41
表1-5混合型益生菌醱酵飼料或益生菌水對肉雞生長性狀之影響(試驗一)………………………………………………………. 42
表1-6乾燥混合型益生菌醱酵飼料對肉雞生長性狀之影響
(試驗二)....................................................................................... 43
表1-7乾燥混合型益生菌醱酵飼料對肉雞屠體性狀之影響
(試驗二)....................................................................................... 44
表1-8乾燥混合型益生菌醱酵飼料對肉雞消化道pH值之影響
(試驗二)………………………………………………………... 45
表1-9乾燥混合型益生菌醱酵飼料對肉雞消化道乳酸桿菌及大腸桿菌族群數之影響(試驗二)…………………………………... 46
表2-1肉雞β-actin及碳酸酐酶引子序列……………………………... 51
表2-2混合型益生菌醱酵飼料對肉雞生長性狀之影響
(試驗一)………………………………………………………... 56
表2-3混合型益生菌醱酵飼料對肉雞脛骨性狀之影響
(試驗一)………………………………………………………... 57
表2-4混合型益生菌醱酵飼料對肉雞血液性狀之影響
(試驗一)………………………………..………….…………… 58
表2-5乾燥混合型益生菌醱酵飼料對肉雞蹠骨性狀之影響
(試驗二)………………………………………………………... 59


圖次
頁次
圖1-1.乾燥醱酵飼料製備流程圖……………………………... 23
圖1-2.乾燥混合型醱酵飼料二維電泳圖…………………....... 40
圖2-1.乾燥醱酵混合型飼料對肉雞蹠骨組織之影響
(試驗二)………………………………………………... 60
圖2-2.乾燥混合型醱酵飼料肉雞腺胃CA-IV基因表現量
(試驗二)………………………………………………... 61
白火城、黃森源、林人壽。1996。家畜臨床血液生化學。立宇出版社。台中市。
杜冰、劉長海、吳建忠。2006。飼用微生態制劑-動物用益生菌的研究應用。糧食與飼料工業7:38-39。
施柏齡、許振忠、邱文石、范揚廣、余碧。1994。飼料中鈣含量對五~八週齡台灣土雞生長性狀的影響。中畜會誌23(2):127-137。
柯瑋羚。2007。混合型益生菌發酵飼料製造對肉雞之影響。碩士論文。國立嘉義大學動物科學系。碩士論文。嘉義市。
梁金銅。1990。骨骼肌肉系統之外傷與病變。藝軒出版社。台北市。
許元勳。2004。納豆菌的生理功能及其產業應用,生物產業。15:73-78。
許元勳。2005。納豆菌發酵製品介紹及國內研發狀況,農業生技產業3:45-52。
許元勳。2003。現代生物科技的新寵兒-神奇納豆菌。生物產業14(1):53-59。
陳吉平。1997。微生物學-概念與應用。睿煜出版社,屏東縣。
曹鈺、孫玲玲、陸健。2006。酸與膽汁耐性芽孢益生菌的篩選。飼料研究。12:31-34。
張文欣、許晉嘉、黃琳蘋、游上輝、謝佳雯、陳國隆。2007。不同混合型益生菌醱酵飼料對0-21日齡肉雞生長及骨骼性狀之影響。中畜會誌。36(增刊):106。
葉瑞涵。2008。混合型益生菌醱酵飼料應用於豬隻之評估。國立嘉義大學動物科學系。碩士論文。嘉義市。
蔡英傑。1998。乳酸菌應用綜論。生物產業 9(4):258-265。
廖啟成。1998。乳酸菌之分類及應用。食品工業2(30):1-10。
鄧德豐。1987。應用微生物。業強出版社,台北。
AOAC. 1990. Official Methods of Analysis. 14th edn. Association of Official Analytical Chemists, Arlington, Virginia.
Barrow, P. 1992. Probiotics for chickens. In R. Fuller (ed.), Probiotics: the scientific basis. Chapman & Hall, London, United Kingdom. pp. 225-257.
Batal, A. B., and C. M. Parsons. 2003. Utilization of different soy products as affected by age in chicks. Poult. Sci. 82: 454-462.
Bell, D. J. and B. M. Freeman. 1971. Physiology and Biochemistry of the Domestic Fowl. Academic Press, London and New York.
Besong, S., J. A. Jackson, C. L. Hicks, and R. W. Hemken. 1996. Effects of a supplemental liquid yeast product on feed intake, ruminal profiles, and yield, composition, and organoleptic characteristics of milk from lactating holstein cows. J Dairy Sci. 79: 1654-1658.
Boguhn, J., H. Kluth, and M. Rodehutscord. 2006. Effect of total mixed ration composition on fermentation and efficiency of ruminal microbial crude protein synthesis in vitro. J. Dairy Sci. 89: 1580-1591.
Chen, K. L., W. L. Kho, S. H. You, R. H. Yeh, S. W. Tang, and C. W. Hsieh. 2009. Effect of Bacillus subtilis var. natto and Saccharomyces cerevisiae mixed fermented feed on the enhanced growth performance of broilers. Poult. Sci. 88: 309-315.
Chen, K. L., W. L. Kho, C. F. Yung, C.W. Hsieh, and B.C. Weng. 2008. Effects of Bacillus subtilis natto and Saccharomyces cerevisiae mixture fermented feed on the growth performance enhancement of broilers. World Poultry Congress., June 30-July 4. 2008. Queensland, Australia.
Chiang, S. H. and W. M. Hsieh. 1995. Effect of direct-fed microorganisms on broiler growth performance and litter ammonia level. Asian-Aus. J. Anim. Sci. 8(2): 159-162.
Cumby, T. R. 1986. Design requirements of liquid feeding systems for pigs: A review. J. Agric. Eng. Res. 34: 153-172.
De Vrese M. and J. Schrezenmeir. 2008. Porbiotics, prebiotics and synbiotics. Adv Biochem Engin/Biotechnol. 111: 1-66.
Dunsford, B. R., D. A. Knabe, and W. E. Hacnsly. 1989. Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early-weaned pig. J. Anim. Sci. 67: 1855-1864.
FAO/WHO Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. Report of a Joint FAO/WHO Expert Consultation 2001. Cordoba, Argentinia. 19-20.
Fasina, Y. O., J. D. Garlich, H. L. Classen, P. R. Ferket, G. B. Havenstein, J. L. Grimes, M. A. Qureshi, and V. L. Christensen. 2004. Respones of turkey poults to soybean lectin levels typically encountered in commercial diets. 1. Effect on growth and nutrient digestibility. Poult. Sci. 83: 1559-1571.
Feng, J., X. Liu, Y. Y. Liu, Z. R. Xu, and Y. P. Lu. 2007. Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Anim. Feed Sci. Technol. 134: 235-242.
Fuller, R. 1989. Probiotic in man and animals. J. Appl. Bacteriol. 66: 365-378.
Galvanovskii, Y. Y., M. Y. Valinietse, and V. K. Bauman. 1985. Effect of vitamin D on the transport of inorganic phosphorus and activity of alkaline phosphatase in the small intestine of chickens. Sechenova 71(2):243-247.
Geary, T. M., P. H. Brooks, J. D. Beal, and A. Campbell. 1999. Effect on weaner pig performance and diet microbiology of feeding a liquid diet acidified to pH 4 with either lactic acid or through fermentation with Pediococcus acidilactiei. J. Sci. Food Agric. 79: 636-640.
Hong, K. J., C. H. Lee, and S. W. Kim. 2004. Aspergillus oryzae GB-107 fermentation improve nutritional quality of food soybeans and feed soybean meals. J. Med. Food. 7: 430-434.
Huyghebaert, G. 2003. Replacement of antibiotics in poultry. Eastern Nutrition Coference, Québec, Canada. 8-9 May. 55-78.
Hyronimus, B., C. Le Marrec, A. H. Sassi, and A. Deschamps. 2000. Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. Food Microbiol. 61: 193-197.
Jensen, B. B., and L. L. Mikkelsen. 1998. Feeding liquid diets to pigs. in Recent Advance in Animal Nutrient. P. C. Garnsworthy and J. Wisenman, ed. Nottingham Univ. Press, Nottingham, U. K. 107-126.
Jiang, R., X. Chang, B. Stoll, K. J. Ellis, R. J. Shypallo, E. Weaver, J. Campbell, and D. G. Burrin 2000. Dietary plasma proteins used more efficiently than extruded soy protein for lean tissue growth in early-weaned pigs. J. Nutr. 130: 2016-2019.
Jin, L. Z., Y. W. Ho, N. Abdullah, and S. Jalaludin. 1996a. Influence of dried Bacillus subtilis and Lactobacilli culture on intestinal microflora and performance in broilers. Asian-Aus J. Anim. Sci. 9: 397-404.
Jin, L. Z., Y. W. Ho, N. Abdullah, M. A. Ali, and S. Jalaludin. 1998a. Effects of adherent Lactobacillus cultures on growth, weight of organs and intestinal microflora and volatile fatty acids in broilers. Anim. Feed Sci. Technol. 70: 197-209.
Jin, L. Z., Y. W. Ho, N. Abdullah, and S. Jalaludin. 1998b. Growth performance, intestinal microbial populations, and serum cholesterol of broilers fed diets containing Lactobacillus culture. Poult. Sci. 77: 1259-1265.
Jin, L. Z., Y. W. Ho, N. Abdullah, and S. Jalaludin. 2000. Digestive and bacterial enzyme activities in broilers fed diets supplemented with Lactobacillus cultures. Poult. Sci. 79: 886-891.
Kalavathy, R., N. Abdullah, S. Jalaudin, and Y. W. Ho. 2003. Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens. Br. Poult. Sci. 44: 139-144.
Karaoglu, M., and H. Durdag. 2005. The Influence of Dietary Probiotic (Saccharomyces cerevisiae) Supplementation and Different Slaughter Age on the Performance, Slaughter and Carcass Properties of Broilers. Poult. Sci. 5: 309-316.
Kim, N., J. L. Yang, and Y. S. Song. 1999. Physiological functions of chongkukjang. Food Ind. Nutr. 4: 40-46.
Koh, J. H., K. W. Yu, and H. J. Suh. 2002. Biological activities of Saccharomyces cerevisiae and fermented rice bran as feed additives. Lett. Appl. Microbiol. 35: 47-51.
Lee, H. J. 1998. Health functional peptides from soybean foods. Korea Soybean Digest. 15: 16-22.
Li, D. F., J. L. Nelssen, P. G. Raddy, F. Blecha, J. D. Hancock, G. Allee, R. D. Goodband, and R. D. Klemm. 1990. Transient gypersensitivity to soybean meal in the early weaned pig. J. Anim. Sci. 68: 1790-1799.
Lilly, D. M., and R. H. Stillwell. 1965. Probiotic: growth promoting factors produced by microorganisms. Sci. 147: 747-748.
Mathivanan R., P. Selvaraj, and K. Nanjappan. 2006. Feeding of Fermented Soybean Meal on Broiler Performance. Poult. Sci. 9: 868-872.
Matsuo, M. 2006. Chemical components, palatability, antioxidant activity and antimutagenicity of oncom miso using a mixture of fermented soybeans and okara with Neurospora intermedia. J. Nutr. Sci. Vitaminol. (Tokyo) 52: 216-222.
Mohan, B., R. Kadirvel, A. Natarajan, and M. Bhaskaran. 1996. Effect of probiotic supplementation on growth, nitrogen utilization and serum cholesterol in broilers. Br. Poult. Sci. 37: 395-401.
Mountzouris, K. C., P. Tsirtsikos, E. Kalamara, S. Nitsch, G. Schatzmayr, and K. Fegeros. 2007. Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cacal microflora composition and metabolic activities. Poult. Sci. 86: 309-317.
Mutus, R., N. Kocabagli, M. Alp, N. Acar, M. Eren, and S. S. Gezen. 2006. The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers. Poult. Sci. 85: 1621-1625.
Onyango, E. M., P. Y. Hester, R. Stroshine, and O. Adeola. 2003. Bone densitometry as an indicator of percentage tibia ash in broiler chicks fed varying dietary calcium and phosphorus levels. Poult. Sci. 82:1787–1791.
Parker, R. B. 1974. Probiotic, the other half of the antibiotic story. Anim. Nutr. Health. 29: 4-8.
Pascual, M., M. Hugas, R. I. Badiola, J. M. Monfort, and M. Garriga. 1999. Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization in chickens. Appl. Environ. Microbiol. 65: 4981-4986.
Rafacz-Livingston, K. A., C. M. Parsons, and R. A. Jungk. 2005. The effects of various organic acids on phytate phosphorus utilization in chicks. Poult. Sci. 84: 1356-1362
Rao, S. K., M. S. West, T. J. Frost, J. I. Orban, M. M. Bryant, and D. A. Roland, Sr. 1993. Sample size required for various methods of assessing bone status in commercial leghorn hens. Poult. Sci. 72:229–235.
Roberto, M., R. La, C. Gabriella, M. C. Simon, and J. W. Martin. 2001. Bacillus subtilis spores competitively exclude Escherichia coli O78:K80 in poultry. Vet. Microbiol. 79: 133-142.
Salminen S, C. Bouley, M. C. Boutron-Ruault, J. H. Cummings, A. Franck, G. R. Gibson, E. Isolauri, M. C. Moreau, M. Roberfroid, and I. Rowland. 1998. Functional food science and gastrointestinal physiology and function. Brit. J. Nutr. 80:147-171.
Santoso, U., K. Tanakaa, and S. Ohtania. 1995. Effect of dried Bacillus subtilis culture on growth, body composition and hepatic lipogenic enzyme activity in female broiler chicks. British J. Nutri. 74: 523-529.
Santos, F. Solis de los, M. B. Farnell, G. Tellez, J. M. Balog, N. B. Anthony, A. Torres-Rodriguez, S. Higgins, B. M. Hargs, and A. M. Donoghue. 2005. Effect of prebiotic on gut development and ascites incidence of broilers reared in a hypoxic environment. Poult. Sci. 84: 1092-1100.
SAS Institute. 2002. SAS/STAT User’s guide: Statistics. Version 9. 1st ed. SAS Inst. Inc., Cary, NC, USA.
Schrezenmeir J. and M. de Vrese 2001. Probiotics, prebiotics and synbiotics approaching a definition. Am. J. Clin. Nutr. 73:361-364.
Scholten, R. 2001. Fermentation of liquid diets for pigs. Ph. D. Diss., Wageningen Univ, Wageningen, The Netherlands.
Scholten, R., C. M. M. van der Peet-Schwering, L. A. den Hartog, J. W. Schrama, and M. W. A. Verstegen. 2002. Fermented wheat in liquid diets: effects on gastrointestinal characteristics in weaning piglets. J. Anim. Sci. 80: 1179-1186.
Tang, S. W., W. L. Kho, C. W. Hsieh, C. Y. Yu, B. Yu, K. L. Chen. 2008. Effects of Bacillus subtilis natto and Lactobacillus sporogenes mixture fermented feed on the enhancement of growth performance in broilers. World Poultry Congress., June 30-July 4. 2008. Queensland, Australia.
Tannock, G. W. 2001. Molecular assessment of intestinal microflora. Am. J. Clin. Nutr. 73: 410-414.
Tomasik, P. J., and P. Tomasik. 2003. Probiotics and prebiotics. Cereal Chem. 80(2): 113-117.
Van Winsen, R. L., D. Keuzenkamp, B. A. P. Urlings, L. J. A. erheijden, and F. van Knapen. 2002. Effect of fermented feed on shedding of Enterobacteriaceae by fattening pigs. Vet. Microbiol. 87: 3.
Yang, W. Z. and K. A. Beauchemin. 2006. Increasing the physically effective fiber content of dairy cow diets may lower efficiency of feed use. J Dairy Sci. 89: 2694-2704.
Yeo, J., and K. Kim. 1997. Effect of feeding diets containing an antibiotic, a probiotic, or yucca extract on growth and intestinal urease activity in broiler chicks. Poult. Sci. 76: 381-385.
Zhang, A. W., B. D. Lee, S. K. Lee, K. W. Lee, G. H. An, K. B. Song, and C. H. Lee. 2005. Effects of yeast (Saccharomuces cerevisiae) cell components on growth performance, meat quality and ileal mucosa development of broiler chicks. Poult. Sci. 84: 1015-1021.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top