跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 05:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔣承廷
研究生(外文):Jiang, Cheng-Ting
論文名稱:應用於帕金森氏症治療之局部場電位擷取之低雜訊、低功耗類比前置放大器
論文名稱(外文):Low-noise and low-power Analog Front End of Local Field Potential Acquisition for Parkinson's disease treatment
指導教授:洪崇智
指導教授(外文):Hung, Chung-Chih
口試委員:李育民廖育德洪崇智
口試委員(外文):Lee, Yu-MinLiao, Yu-TeHung, Chung-Chih
口試日期:2017-09-27
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:86
中文關鍵詞:前置放大器帕金森低雜訊低功耗
外文關鍵詞:PreampParkinsonLow-noise and low-power
相關次數:
  • 被引用被引用:0
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
帕金森患者接受左多巴藥物治療,確實能得到症狀的改善;然而,用藥幾年後,多半會面臨藥效窗口變窄的「開關現象」。此時,以外科手術進行的「深腦刺激術(Deep Brain Stimulation,簡稱DBS)」,便成了另一種治療選擇。
本篇主旨為提出一應用於帕金森氏症治療系統(深部腦刺激)之全差動前置放大電路,目的用以將局部場電位訊號放大並且濾除非帕金森氏症相關頻段之成分。在子電路上設計,為了將非理想成份諸如閃爍雜訊、熱雜訊等消除,提高其訊號雜訊比,以增加局部場電位訊號之可辨度,本電路採用全差動雙級反向運算放大器,並藉由設計電晶體尺寸來抑制雜訊,將輸入級的場效電晶體操作於弱反轉區,以此降低電路在低頻產生的閃爍雜訊並降低電路的功率消耗。另外,考量到低通濾波器的電阻也使用虛擬電阻的話,會導致輸出訊號有失真的現象,因此將此電阻由切換式電容電阻取代可降低訊號的失真,並將系統增益設計為50dB、60dB、70dB的可調倍率可以避免輸出訊號因飽和而失真。針對產生極低頻極點需要的大電阻,在此架構中使用虛擬電阻來實現,考慮到PMOS電晶體所提供的低頻閃爍雜訊小,故採用PMOS來實現此虛擬電阻。整體電路以高解析度、低功耗及低雜訊為設計目標,以符合生醫電子系統之效能要求。
本文所提整體前置放大電路之頻寬設計為1Hz至100Hz(可調)。在電路實現上,當輸入訊號頻率30Hz、1mVp輸入振幅、系統增益50dB的情況下,此架構之整體總諧波失真率(THD)為-74.9dB。本電路使用TSMC 0.18μm標準CMOS 1P6M製程完成。在1.8 V電源供應下,總功率消耗約為35μW,輸入參考雜訊為0.93μVrms。
Parkinson patients, receiving L-DOPA drug treatment, can really get the symptoms improved; however, after several years of treatment, most of them will face a "switch phenomenon" with poor efficacy. At this point, the "Deep Brain Stimulation (DBS)", which has undergone surgery, has become another treatment option.
The subject of this paper is to propose a fully differential preamplifier circuit for the Parkinson's disease treatment system (deep brain stimulation) to amplify the local field potential signal and filter out the components of the non-Parkinson's disease-related frequency band. In the sub-circuit design, to eliminate non-ideal components, such as flicker noise, thermal noise, etc, improve its signal to noise ratio, and increase the local field potential signal resolution, the circuit uses a two-stage fully differential inverter-based CMOS amplifier. And by designing the transistor sizes, the two-stage fully differential inverter-based CMOS amplifier can suppress noise. The transistors of the input stage operating in the weak inversion region can reduce the flicker noise and the power consumption. In addition, if the resistor in the low-pass filter has also used the virtual resistance, the output signal will lead to distortion of the phenomenon. So this resistor is replaced by switched-capacitor resistor to avoid signal distortion. The system gain is designed to be adjustable among 50dB, 60dB, and 70dB magnification that can avoid the distortion of output signal due to saturation of the amplifier. Pseudo-resistors are used with the large resistance required to produce very low frequency poles. PMOS is used to implement the pseudo-resistor, because the flicker noise of the PMOS is smaller at the low frequency. The overall circuit has the performance of high resolution, low power consumption, and low noise to achieve the specification of a health electronic system.
The bandwidth of the overall preamplifier circuit is designed to be from 1Hz to 100Hz. When the input signal is 30Hz, 1mVp, the system gain is 50dB and the total harmonic distortion (THD) is -74.9dB. This circuit was fabricated by TSMC 0.18μm standard CMOS 1P6M process. At 1.8V power supply, the total power consumption is about 35μW and the input-referred-noise is 0.93μVrms.
摘要 iii
ABSTRACT v
誌謝 vii
目錄 viii
圖目錄 x
表目錄 xii
第一章 緒論 1
1.1 研究背景 1
1.1.1 局部場電位訊號( Local Field Potential Signal ) 1
1.1.2 閉迴路腦刺激系統( Closed Loop Stimulation System )2
1.2 研究動機 3
1.3 論文架構 4
第二章 背景 5
2.1 場效電晶體之雜訊源及模型 5
2.1.1 熱雜訊( Thermal Noise ) 6
2.1.2 閃爍雜訊(Flicker Noise) 9
2.1.3 傳統運算放大器雜訊分析 11
2.2 取樣定理 14
2.3 弱反轉區 15
第三章 交換電容電路 21
3.1 交換電容電路開關的設計及考量 21
3.1.1 以MOSFET做為開關 21
3.1.2 MOS採樣開關之非理想效應 23
3.1.3 電荷注入抵消 26
3.2 電阻擬態 29
3.3 交換式電容電路操作原理分析 31
3.3.1 敏感性積分器 32
3.3.1 非敏感性積分器 34
第四章 前置放大器 37
4.1 系統架構一簡介 37
4.1.1 系統架構一分析 37
4.1.2 內部電路分析 41
4.2 系統架構二簡介 51
4.2.1 刺激防護電路 52
4.2.2 刺激電極介紹 56
第五章 模擬與量測結果 58
5.1 電路模擬結果 58
5.1.1 架構一後模擬結果 58
5.1.2 架構二後模擬結果 66
5.1.3 模擬比較表 68
5.2 電路佈局 69
5.3 量測環境設定與結果 71
5.3.1 量測環境設定 71
5.3.2 功耗量測結果 73
5.3.3 function量測結果 73
5.3.4 頻率響應量測結果 76
5.3.5 頻譜量測結果 78
5.3.6 雜訊量測結果 79
5.3.7 量測和模擬結果比較 80
5.3.8 晶片微顯圖 81
第六章 結論與未來展望 82
6.1 結論 82
6.2 未來展望 83
Reference 84
[1] Chen C, Brücke C, Kempf F, et al. Deep brain stimulation of the subthalamic nucleus: a two-edged sword. Curr Biol. 2006;16(22):952-953.
[2] Rousseaux M, Krystkowiak P, Kozlowski O, Ozsancak C, Blond S, Destée A. Effects of subthalamic nucleus stimulation on parkinsonian dysarthria and speech intelligibility. J Neurol. 2004;251(3):327-334.
[3] Eusebio A, Thevathasan W, Gaynor LD, et al. Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J Neurol Neurosurg Psychiatry. 2011;82:569-573.
[4] Priori A, Foffani G, Rossi L, Marceglia S. Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Experimental Neurology. 2013;245:77–86.
[5] P. E. Allen, D. R. Holberg, CMOS Analog Circuit Design. Oxford University Press, New York, 2002.
[6] B. Razavi, Design of analog CMOS integrated circuits. New York: McGraw-Hill, 2001.
[7] C. D. Motchenbacher and J. A. Connelly, Low Noise Electronic System Design, John Wiley & Sons, New York, 1993.
[8] P. R. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, John Wiley & Sons, New York, 2000.
[9] D. A. Johns and K. Martin, Analog integrated circuit design, John Wiley and Sons Inc., New York, 1997.
[10] Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd ed. McGraw-Hill, 1999.
[11]A. J. Scholten, H. J. Tromp, L. F. Tiemeijer, R. van Langevelde, R. J. Havens, P. W. H. de Vreede, R. F. M. Roes, P. H. Woerlee, A. H. Montree,and D. B. M. Klaassen, “Accurate thermal noise model for deep–submicron CMOS,” in IEDM Tech.Dig., Dec. 1999, pp. 155–158.
[12] C. H. Chen, M. J. Deen, Y. Cheng, and M. Matloubian, “Extraction of the induced gate noise, channel thermal noise and their correlation in sub–micron MOSFETs from RF noise measurements,” IEEE Trans. Electron Devices, vol. 48, pp. 2884–2892, Dec. 2001.
[13] C. H. Chen and M. J. Deen, “Channel noise modeling of deep submicron MOSFETs,” IEEE Trans. Electron Device, vol. 49, no. 8, pp. 1484–1487, Aug. 2002.
[14] D. K. Shaeffer, and T. H. Lee. “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997.
[15] A. J. Scholten, L. F. Tiemeijer, R. Van Langevelde, R. J. Havens, A. T. A. Zegers-van Duijnhoven, and V. C. Venezia, “Noise modeling for RF CMOS circuit simulation,” IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 618-632, Mar. 2003.
[16] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed. New York: Cambridge University Press, 2004.
[17] S. Bernard, Digital Communications Fundamentals and Applications. Prentice-Hall, 2001.
[18] D. C. von Grungen, R. Sigg, M. Ludeig, U. W. Brugger, G. S. Moschytz, H. Melchior, “Integrated Switched-Capacitor Low-Pass Filter with Combined Anti-Aliasing Decimation Filter for Low Frequencies,” IEEE J. Solid-State Circuits, vol. SC-17, pp. 1024-1028, Dec. 1982.
[19] A. V. Oppenheim, R. W. Schafer and J. R. Buck, Discrete-Time Signal Processing, Prentice Hall, 1999.
[20] D. A. Johns and K. Martin, Analog integrated circuit design, John Wiley & Sons, Inc., New York, 1997.
[21] T. M. Hollis, D. J. Comer, and D. T. Comer, “Optimization of MOS amplifier performance through channel length and inversion level selection,” IEEE Trans. Circ. Syst.-II: Express Briefs, vol. 52, no. 9, Sep. 2005.
[22] D. M. Binkley, B. J. Blalock, and J. M. Rochelle, "Optimizing drain current, inversion level, and channel length in analog CMOS design," Analog Integrated Circuits and Signal Processing, vol. 47, pp. 137-163, May 2006.
[23] Shi Wang; Yixiao Wang; Long Chen; Jiayi Wang; Xiaozhe Liu; Le Ye; Ru Huang; Huailin Liao, “A 192nW inverter-based chopper instrumentation amplifier for micropower ECG applications”, Solid-State and Integrated Circuit Technology , 12th IEEE International Conference, Oct.2014.
[24] N. Verma et al., “A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 804-816, Apr. 2010
[25] Q. Fan, F. Sebastiano, J. H. Huijsing, and K. A. A. Makinwa, “A 1.8 μW 60nV/rtHz capacitively-coupled chopper instrumentation amplifier in 65nm CMOS for wireless sensor nodes,” IEEE J. Solid-State Circuits, vol. 46, pp. 1534-1543, Jul. 2011.
[26] J. Yoo et al., “An 8-channel scalable EEG acquisition SoC with patient-specific seizure classification and recording processor,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 214-228, Jan. 2013.
[27] Chung-Yu Wu, and Chia-Shiung Ho, “An 8-Channel Chopper-Stabilized Analog Front-End Amplifier for EEG Acquisition in 65-nm CMOS”, IEEE Asian Solid-State Circuits Conference, November 9-11,2015.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top