|
[1] Chen C, Brücke C, Kempf F, et al. Deep brain stimulation of the subthalamic nucleus: a two-edged sword. Curr Biol. 2006;16(22):952-953. [2] Rousseaux M, Krystkowiak P, Kozlowski O, Ozsancak C, Blond S, Destée A. Effects of subthalamic nucleus stimulation on parkinsonian dysarthria and speech intelligibility. J Neurol. 2004;251(3):327-334. [3] Eusebio A, Thevathasan W, Gaynor LD, et al. Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J Neurol Neurosurg Psychiatry. 2011;82:569-573. [4] Priori A, Foffani G, Rossi L, Marceglia S. Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Experimental Neurology. 2013;245:77–86. [5] P. E. Allen, D. R. Holberg, CMOS Analog Circuit Design. Oxford University Press, New York, 2002. [6] B. Razavi, Design of analog CMOS integrated circuits. New York: McGraw-Hill, 2001. [7] C. D. Motchenbacher and J. A. Connelly, Low Noise Electronic System Design, John Wiley & Sons, New York, 1993. [8] P. R. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, John Wiley & Sons, New York, 2000. [9] D. A. Johns and K. Martin, Analog integrated circuit design, John Wiley and Sons Inc., New York, 1997. [10] Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd ed. McGraw-Hill, 1999. [11]A. J. Scholten, H. J. Tromp, L. F. Tiemeijer, R. van Langevelde, R. J. Havens, P. W. H. de Vreede, R. F. M. Roes, P. H. Woerlee, A. H. Montree,and D. B. M. Klaassen, “Accurate thermal noise model for deep–submicron CMOS,” in IEDM Tech.Dig., Dec. 1999, pp. 155–158. [12] C. H. Chen, M. J. Deen, Y. Cheng, and M. Matloubian, “Extraction of the induced gate noise, channel thermal noise and their correlation in sub–micron MOSFETs from RF noise measurements,” IEEE Trans. Electron Devices, vol. 48, pp. 2884–2892, Dec. 2001. [13] C. H. Chen and M. J. Deen, “Channel noise modeling of deep submicron MOSFETs,” IEEE Trans. Electron Device, vol. 49, no. 8, pp. 1484–1487, Aug. 2002. [14] D. K. Shaeffer, and T. H. Lee. “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997. [15] A. J. Scholten, L. F. Tiemeijer, R. Van Langevelde, R. J. Havens, A. T. A. Zegers-van Duijnhoven, and V. C. Venezia, “Noise modeling for RF CMOS circuit simulation,” IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 618-632, Mar. 2003. [16] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed. New York: Cambridge University Press, 2004. [17] S. Bernard, Digital Communications Fundamentals and Applications. Prentice-Hall, 2001. [18] D. C. von Grungen, R. Sigg, M. Ludeig, U. W. Brugger, G. S. Moschytz, H. Melchior, “Integrated Switched-Capacitor Low-Pass Filter with Combined Anti-Aliasing Decimation Filter for Low Frequencies,” IEEE J. Solid-State Circuits, vol. SC-17, pp. 1024-1028, Dec. 1982. [19] A. V. Oppenheim, R. W. Schafer and J. R. Buck, Discrete-Time Signal Processing, Prentice Hall, 1999. [20] D. A. Johns and K. Martin, Analog integrated circuit design, John Wiley & Sons, Inc., New York, 1997. [21] T. M. Hollis, D. J. Comer, and D. T. Comer, “Optimization of MOS amplifier performance through channel length and inversion level selection,” IEEE Trans. Circ. Syst.-II: Express Briefs, vol. 52, no. 9, Sep. 2005. [22] D. M. Binkley, B. J. Blalock, and J. M. Rochelle, "Optimizing drain current, inversion level, and channel length in analog CMOS design," Analog Integrated Circuits and Signal Processing, vol. 47, pp. 137-163, May 2006. [23] Shi Wang; Yixiao Wang; Long Chen; Jiayi Wang; Xiaozhe Liu; Le Ye; Ru Huang; Huailin Liao, “A 192nW inverter-based chopper instrumentation amplifier for micropower ECG applications”, Solid-State and Integrated Circuit Technology , 12th IEEE International Conference, Oct.2014. [24] N. Verma et al., “A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 804-816, Apr. 2010 [25] Q. Fan, F. Sebastiano, J. H. Huijsing, and K. A. A. Makinwa, “A 1.8 μW 60nV/rtHz capacitively-coupled chopper instrumentation amplifier in 65nm CMOS for wireless sensor nodes,” IEEE J. Solid-State Circuits, vol. 46, pp. 1534-1543, Jul. 2011. [26] J. Yoo et al., “An 8-channel scalable EEG acquisition SoC with patient-specific seizure classification and recording processor,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 214-228, Jan. 2013. [27] Chung-Yu Wu, and Chia-Shiung Ho, “An 8-Channel Chopper-Stabilized Analog Front-End Amplifier for EEG Acquisition in 65-nm CMOS”, IEEE Asian Solid-State Circuits Conference, November 9-11,2015.
|