|
1. LeempoelPJB, KäyserAF, vanRossumGMJM, deHaanAFJ. The survival rate of bridges. A study of 1674 bridges in 40 Dutch general practices. J Oral Rehabil. 1995;22(5):327–30. 2. BrånemarkP-I, BreineU, AdellR, HanssonBO, LindströmJ, OhlssonÅ. Intra-Osseous Anchorage of Dental Prostheses: I. Experimental Studies. Scand J Plast Reconstr Surg. 1969;3(2):81–100. 3. PjeturssonBE, BräggerU, LangNP, ZwahlenM. Comparison of survival and complication rates of tooth-supported fixed dental prostheses (FDPs) and implant-supported FDPs and single crowns (SCs). Clin Oral Implants Res. 2007;18(SUPPL. 3):97–113. 4. MischCE, PerelML, WangHL, SammartinoG, Galindo-MorenoP, TrisiP, et al. Implant success, survival, and failure: The International Congress of Oral Implantologists (ICOI) pisa consensus conference. Implant Dent. 2008;17(1):5–15. 5. ClementiniM, MorlupiA, CanulloL, AgrestiniC, BarlattaniA. Success rate of dental implants inserted in horizontal and vertical guided bone regenerated areas: A systematic review. Vol. 41, International Journal of Oral and Maxillofacial Surgery. 2012. p. 847–52. 6. BuserD, DulaK, BelserU, HirtHP, BertholdH. Localized ridge augmentation using guided bone regeneration. 1. Surgical procedure in the maxilla. Int J Periodontics Restorative Dent. 1993;13(1):29–45. 7. BuserD, DulaK, BelserUC, HirtHP, BertholdH. Localized ridge augmentation using guided bone regeneration. II. Surgical procedure in the mandible. Int J Periodontics Restorative Dent. 1995;15(1):11–29. 8. LiuJ, KernsDG. Mechanisms of Guided Bone Regeneration: A Review. Open Dent J. 2014;8(1):56–65. 9. TorabinejadM, ChivianN. Clinical applications of mineral trioxide aggregate. J Endod. 1999;25(3):197–205. 10. HuangGTJ. Apexification: The beginning of its end. Vol. 42, International Endodontic Journal. 2009. p. 855–66. 11. HargreavesKM, DiogenesA, TeixeiraFB, GlendorU, AndreasenJO, KabaAD, et al. Treatment options: biological basis of regenerative endodontic procedures. J Endod. 2013;39(3 Suppl):S30-43. 12. LinLM, RicucciD, HuangGTJ. Regeneration of the dentine-pulp complex with revitalization/revascularization therapy: Challenges and hopes. Vol. 47, International Endodontic Journal. 2014. p. 713–24. 13. ZimmermannG, WagnerC, SchmeckenbecherK, Wentzensen a, Moghaddam a. Treatment of tibial shaft non-unions: bone morphogenetic proteins versus autologous bone graft. Injury. 2009;40 Suppl 3:S50–3. 14. JanickiP, SchmidmaierG. What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells. Vol. 42, Injury. 2011. 15. BanwartJC, AsherMA, HassaneinRS. Iliac Crest Bone Graft Harvest Donor Site Morbidity. Spine (Phila Pa 1976). 1995;20(9):1055–60. 16. LangerR. Tissue Engineering. Mol Ther. 2000;1(1):12–5. 17. HollisterSJ. Porous scaffold design for tissue engineering. Vol. 4, Nature Materials. 2005. p. 518–24. 18. GrossBC, ErkalJL, LockwoodSY, ChenC, SpenceDM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem. 2014;86(7):3240–53. 19. HoyMB. 3D Printing: Making Things at the Library. Med Ref Serv Q. 2013;32(1):93–9. 20. SchubertC, VanLangeveldMC, DonosoLA. Innovations in 3D printing: A 3D overview from optics to organs. Br J Ophthalmol. 2014;98(2):159–61. 21. ChiaHN, WuBM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9(1). 22. MelchelsFPW, FeijenJ, GrijpmaDW. A review on stereolithography and its applications in biomedical engineering. Vol. 31, Biomaterials. 2010. p. 6121–30. 23. KruthJ, MercelisP, VanVaerenberghJ, FroyenL, RomboutsM. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J. 2005;11(1):26–36. 24. WidmerMS, MikosAG. Fabrication of biodegradable polymer scaffolds for Tissue Engineering. In: Frontiers in Tissue Engineering. 1998. p. 107–18. 25. HutmacherDW. Scaffolds in tissue engineering bone and cartilage. Vol. 21, Biomaterials. 2000. p. 2529–43. 26. ZeinI, HutmacherDW, TanKC, TeohSH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23(4):1169–85. 27. KokuboT, ItoS, HuangZT, HayashiT, SakkaS, KitsugiT, et al. Ca, P‐rich layer formed on high‐strength bioactive glass‐ceramic A‐W. J Biomed Mater Res. 1990;24(3):331–43. 28. deAzaPN, GuitianF, deAzaS. Bioactivity of wollastonite ceramics: In vitro evaluation. Scr Metall Mater. 1994;31(8):1001–5. 29. MertzW. The essential trace elements. Science (80- ). 1981;213(4514):1332–8. 30. WakedW, GrauerJ. Silicates and bone fusion. Orthopedics. 2008;31(6):591–7. 31. WuC, ChangJ. A review of bioactive silicate ceramics. Vol. 8, Biomedical Materials (Bristol). 2013. 32. GandolfiMG, TaddeiP, TintiA, DeDorigoES, RossiPL, PratiC. Kinetics of apatite formation on a calcium-silicate cement for root-end filling during ageing in physiological-like phosphate solutions. Clin Oral Investig. 2010;14(6):659–68. 33. WangZ. Bioceramic materials in endodontics. Endod Top. 2015;32:3–30. 34. XueW, BandyopadhyayA, BoseS. Mesoporous calcium silicate for controlled release of bovine serum albumin protein. Acta Biomater. 2009;5(5):1686–96. 35. HuangCY, HuangTH, KaoCT, WuYH, ChenWC, ShieMY. Mesoporous Calcium Silicate Nanoparticles with Drug Delivery and Odontogenesis Properties. J Endod. 2017;43(1):69–76. 36. WooSM, KimWJ, LimHS, ChoiNK, KimSH, KimSM, et al. Combination of Mineral Trioxide Aggregate and Platelet-rich Fibrin Promotes the Odontoblastic Differentiation and Mineralization of Human Dental Pulp Cells via BMP/Smad Signaling Pathway. J Endod. 2016;42(1):82–8. 37. LanP, ZhangY, GaoQ, ShaoH, HuX. Studies on the Synthesis and Thermal Properties of Copoly(L-lactic acid/glycolic acid) by Direct Melt Polycondensation. J Appl Polym Sci. 2004;92(4):2163–8. 38. KimHN, KangDH, KimMS, JiaoA, KimDH, SuhKY. Patterning methods for polymers in cell and tissue engineering. Vol. 40, Annals of Biomedical Engineering. 2012. p. 1339–55. 39. PittCG, SchindlerA. Capronor--a biodegradable delivery system for levonorgestrel. In: Long-acting contraceptive delivery systems. 1984. p. 48–63. 40. SunH, MeiL, SongC, CuiX, WangP. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials. 2006;27(9):1735–40. 41. DashTK, KonkimallaVB. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J Control Release. 2011;158(1):15–33. 42. HajialiF, TajbakhshS, ShojaeiA. Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review. Vol. 58, Polymer Reviews. 2018. p. 164–207. 43. NelsonMT, KeithJP, LiBB, StocumDL, LiJ. Electrospun composite polycaprolactone scaffolds for optimized tissue regeneration. Proc Inst Mech Eng Part N J Nanoeng Nanosyst. 2012;226(3):111–21. 44. BarbarisiM, MarinoG, ArmeniaE, VincenzoQ, RossoF, PorcelliM, et al. Use of polycaprolactone (PCL) as scaffolds for the regeneration of nerve tissue. J Biomed Mater Res - Part A. 2015;103(5):1755–60. 45. BragdonB, NoheA. Bone morphogenetic protein treatments for bone healing and regeneration. Bone Morphogenetic Proteins: New Research. 2012. 46. EvenJ, EskanderM, KangJ. Bone morphogenetic protein in spine surgery: current and future uses. J Am Acad Orthop Surg. 2012;20(9):547–52. 47. DecondeAS, SidellD, LeeM, BezouglaiaO, LowK, ElashoffD, et al. Bone morphogenetic protein-2-impregnated biomimetic scaffolds successfully induce bone healing in a marginal mandibular defect. In: Laryngoscope. 2013. p. 1149–55. 48. ElBialyI, JiskootW, Reza NejadnikM. Formulation, Delivery and Stability of Bone Morphogenetic Proteins for Effective Bone Regeneration. Vol. 34, Pharmaceutical Research. 2017. p. 1152–70. 49. IzawaH, HachiyaY, KawaiT, MuramatsuK, NaritaY, BanN, et al. The effect of heat-treated human bone morphogenetic protein on clinical implantation. Clin Orthop Relat Res. 2001;(390):252–8. 50. OhtaH, WakitaniS, TenshoK, HoriuchiH, WakabayashiS, SaitoN, et al. The effects of heat on the biological activity of recombinant human bone morphogenetic protein-2. J Bone Miner Metab. 2005;23(6):420–5. 51. QinW, YangF, DengR, LiD, SongZ, TianY, et al. Smad 1/5 Is involved in bone morphogenetic protein-2-induced odontoblastic differentiation in human dental pulp cells. J Endod. 2012;38(1):66–71. 52. Aquino-MartínezR, ArtigasN, GámezB, Luis RosaJ, VenturaF, CrayJJ. Extracellular calcium promotes bone formation from bone marrow mesenchymal stem cells by amplifying the effects of BMP-2 on SMAD signalling. PLoS One. 2017;12(5). 53. MurrayPE, Garcia-GodoyF, HargreavesKM. Regenerative Endodontics: A Review of Current Status and a Call for Action. J Endod. 2007;33(4):377–90. 54. MargunatoS, TaşliPN, AydinS, Karapinar KazandaʇM, ŞahinF. In vitro evaluation of ProRoot MTA, biodentine, and MM-MTA on human Alveolar bone marrow stem cells in terms of biocompatibility and mineralization. J Endod. 2015;41(10):1646–52. 55. YoldaşSE, BaniM, AtabekD, BodurH. Comparison of the Potential Discoloration Effect of Bioaggregate, Biodentine, and White Mineral Trioxide Aggregate on Bovine Teeth: In Vitro Research. J Endod. 2016;42(12):1815–8. 56. Gomes-CornélioAL, RodriguesEM, SallesLP, MestieriLB, FariaG, Guerreiro-TanomaruJM, et al. Bioactivity of MTA Plus, Biodentine and an experimental calcium silicate-based cement on human osteoblast-like cells. Int Endod J. 2017;50(1):39–47. 57. ShieMY, DingSJ. Integrin binding and MAPK signal pathways in primary cell responses to surface chemistry of calcium silicate cements. Biomaterials. 2013;34(28):6589–606. 58. ChenYW, HoCC, HuangTH, HsuTT, ShieMY. The ionic products from mineral trioxide aggregate-induced odontogenic differentiation of dental pulp cells via activation of the Wnt/β-catenin signaling pathway. J Endod. 2016;42(7):1062–9. 59. ChenY-W, YehC-H, ShieM-Y. Stimulatory effects of the fast setting and suitable degrading Ca-Si-Mg cement on both cementogenesis and angiogenesis differentiation of human periodontal ligament cells. J Mater Chem B. 2015;3(35):7099–108. 60. ShieMY, ChiangWH, ChenIWP, LiuWY, ChenYW. Synergistic acceleration in the osteogenic and angiogenic differentiation of human mesenchymal stem cells by calcium silicate–graphene composites. Mater Sci Eng C. 2017;73:726–35. 61. ChangNJ, ChenYW, ShiehDE, FangHY, ShieMY. The effects of injectable calcium silicate-based composites with the Chinese herb on an osteogenic accelerator in vitro. Biomed Mater. 2015;10(5). 62. AkselH, HuangGTJ. Combined Effects of Vascular Endothelial Growth Factor and Bone Morphogenetic Protein 2 on Odonto/Osteogenic Differentiation of Human Dental Pulp Stem Cells In Vitro. J Endod. 2017;43(6):930–5. 63. WangJ, LiD, LiT, DingJ, LiuJ, LiB, et al. Gelatin tight-coated poly(lactide-co-glycolide) scaffold incorporating rhBMP-2 for bone tissue engineering. Materials (Basel). 2015;8(3):1009–26. 64. LiC, JiangC, DengY, LiT, LiN, PengM, et al. RhBMP-2 loaded 3D-printed mesoporous silica/calcium phosphate cement porous scaffolds with enhanced vascularization and osteogenesis properties. Sci Rep. 2017;7. 65. BastamiF, PaknejadZ, JafariM, SalehiM, Rezai RadM, KhojastehA. Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: Implication for bone tissue engineering. Mater Sci Eng C. 2017;72:481–91. 66. WuC, ChangJ. Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J Control Release. 2014;193:282–95. 67. RatheeshG, VenugopalJR, ChinappanA, EzhilarasuH, SadiqA, RamakrishnaS. 3D Fabrication of Polymeric Scaffolds for Regenerative Therapy. Vol. 3, ACS Biomaterials Science and Engineering. 2017. p. 1175–94. 68. Gómez-LizárragaKK, Flores-MoralesC, DelPrado-AudeloML, Álvarez-PérezMA, Piña-BarbaMC, EscobedoC. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study. Mater Sci Eng C. 2017;79:326–35. 69. ZhangJH, ZhaoSC, ZhuM, ZhuYF, ZhangYD, LiuZT, et al. 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J Mater Chem B. 2014;2(43):7583–95. 70. Flores-CedilloML, Alvarado-EstradaKN, Pozos-GuillénAJ, Murguía-IbarraJS, VidalMA, Cervantes-UcJM, et al. Multiwall carbon nanotubes/polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration. J Mater Sci Mater Med. 2016;27(2):1–12. 71. ShimJH, YoonMC, JeongCM, JangJ, JeongSI, ChoDW, et al. Efficacy of rhBMP-2 loaded PCL/PLGA/β-TCP guided bone regeneration membrane fabricated by 3D printing technology for reconstruction of calvaria defects in rabbit. Biomed Mater. 2014;9(6). 72. LouvrierA, EuvrardE, NicodL, RolinG, GindrauxF, PazartL, et al. Odontoblastic differentiation of dental pulp stem cells from healthy and carious teeth on an original PCL-based 3D scaffold. International Endodontic Journal. 2017; 73. HuangSH, HsuTT, HuangTH, LinCY, ShieMY. Fabrication and characterization of polycaprolactone and tricalcium phosphate composites for tissue engineering applications. J Dent Sci. 2017;12(1):33–43. 74. LimJ, ChongMSK, ChanJKY, TeohSH. Polymer powder processing of cryomilled polycaprolactone for solvent-free generation of homogeneous bioactive tissue engineering scaffolds. Small. 2014;10(12):2495–502. 75. HoCC, FangHY, WangB, HuangTH, ShieMY. The effects of Biodentine/polycaprolactone three-dimensional-scaffold with odontogenesis properties on human dental pulp cells. International Endodontic Journal. 2017; 76. LinYH, ChiuYC, ShenYF, WuYHA, ShieMY. Bioactive calcium silicate/poly-ε-caprolactone composite scaffolds 3D printed under mild conditions for bone tissue engineering. J Mater Sci Mater Med. 2018;29(1). 77. CampsJ, JeanneauC, ElAyachiI, LaurentP, AboutI. Bioactivity of a Calcium Silicate-based Endodontic Cement (BioRoot RCS): Interactions with Human Periodontal Ligament Cells In Vitro. J Endod. 2015;41(9):1469–73. 78. ChenYC, ShieMY, WuYHA, LeeKXA, WeiLJ, ShenYF. Anti-inflammation performance of curcumin-loaded mesoporous calcium silicate cement. J Formos Med Assoc. 2017;116(9):679–88. 79. WangY, NorYA, SongH, YangY, XuC, YuM, et al. Small-sized and large-pore dendritic mesoporous silica nanoparticles enhance antimicrobial enzyme delivery. J Mater Chem B. 2016;4(15):2646–53. 80. YamamotoS, HanL, NoiriY, OkijiT. Evaluation of the Ca ion release, pH and surface apatite formation of a prototype tricalcium silicate cement. Int Endod J. 2017;50:e73–82. 81. GuZ, WangS, WengW, ChenX, CaoL, WeiJ, et al. Influences of doping mesoporous magnesium silicate on water absorption, drug release, degradability, apatite-mineralization and primary cells responses to calcium sulfate based bone cements. Mater Sci Eng C. 2017;75:620–8. 82. PerezRA, El-FiqiA, ParkJH, KimTH, KimJH, KimHW. Therapeutic bioactive microcarriers: Co-delivery of growth factors and stem cells for bone tissue engineering. Acta Biomater. 2014;10(1):520–30. 83. CuiW, LiuQ, YangL, WangK, SunT, JiY, et al. Sustained Delivery of BMP-2-Related Peptide from the True Bone Ceramics/Hollow Mesoporous Silica Nanoparticles Scaffold for Bone Tissue Regeneration. ACS Biomater Sci Eng. 2018;4(1):211–21. 84. GautschiOP, FreySP, ZellwegerR. Bone morphogenetic proteins in clinical applications. Vol. 77, ANZ Journal of Surgery. 2007. p. 626–31. 85. CasagrandeL, DemarcoFF, ZhangZ, AraujoFB, ShiS, NörJE. Dentin-derived BMP-2 and odontoblast differentiation. J Dent Res. 2010;89(6):603–8. 86. NakashimaM. Bone morphogenetic proteins in dentin regeneration for potential use in endodontic therapy. Cytokine Growth Factor Rev. 2005;16(3):369–76. 87. RodriguesEM, Gomes-CornélioAL, Soares-CostaA, SallesLP, VelayuthamM, Rossa-JuniorC, et al. An assessment of the overexpression of BMP-2 in transfected human osteoblast cells stimulated by mineral trioxide aggregate and Biodentine. Int Endod J. 2017;50:e9–18. 88. LiuCH, HungCJ, HuangTH, LinCC, KaoCT, ShieMY. Odontogenic differentiation of human dental pulp cells by calcium silicate materials stimulating via FGFR/ERK signaling pathway. Mater Sci Eng C. 2014;43:359–66. 89. IshackS, MedieroA, WilderT, RicciJL, CronsteinBN. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. J Biomed Mater Res - Part B Appl Biomater. 2017;105(2):366–75. 90. KimWJ, JangCH, KimGH. Optimally designed collagen/polycaprolactone biocomposites supplemented with controlled release of HA/TCP/rhBMP-2 and HA/TCP/PRP for hard tissue regeneration. Mater Sci Eng C. 2017;78:763–72. 91. TadaH, NemotoE, KanayaS, HamajiN, SatoH, ShimauchiH. Elevated extracellular calcium increases expression of bone morphogenetic protein-2 gene via a calcium channel and ERK pathway in human dental pulp cells. Biochem Biophys Res Commun. 2010;394(4):1093–7. 92. SarkerB, LiW, ZhengK, DetschR, BoccacciniAR. Designing Porous Bone Tissue Engineering Scaffolds with Enhanced Mechanical Properties from Composite Hydrogels Composed of Modified Alginate, Gelatin, and Bioactive Glass. ACS Biomater Sci Eng. 2016;2(12):2240–54. 93. XuZ-L, LeiY, YinW-J, ChenY-X, KeQ-F, GuoY-P, et al. Enhanced antibacterial activity and osteoinductivity of Ag-loaded strontium hydroxyapatite/chitosan porous scaffolds for bone tissue engineering. J Mater Chem B. 2016;4(48):7919–28. 94. ZhangB, HeL, HanZ, LiX, ZhiW, ZhengW, et al. Enhanced osteogenesis of multilayered pore-closed microsphere-immobilized hydroxyapatite scaffold via sequential delivery of osteogenic growth peptide and BMP-2. J Mater Chem B. 2017;5(41):8238–53. 95. SeidenstueckerM, KerrL, BernsteinA, MayrHO, SuedkampNP, GadowR, et al. 3D powder printed bioglass and β-tricalcium phosphate bone scaffolds. Materials (Basel). 2017;11(1). 96. BolbasovEN, PopkovAV., PopkovDA, GorbachEN, KhlusovIA, GolovkinAS, et al. Osteoinductive composite coatings for flexible intramedullary nails. Mater Sci Eng C. 2017;75:207–20. 97. El-RashidyAA, RoetherJA, HarhausL, KneserU, BoccacciniAR. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. Vol. 62, Acta Biomaterialia. 2017. p. 1–28. 98. HuangMH, ShenYF, HsuTT, HuangTH, ShieMY. Physical characteristics, antimicrobial and odontogenesis potentials of calcium silicate cement containing hinokitiol. Mater Sci Eng C. 2016;65:1–8. 99. LeeYL, WangWH, LinFH, LinCP. Hydration behaviors of calcium silicate-based biomaterials. J Formos Med Assoc. 2017;116(6):424–31. 100. MahapatraC, SinghRK, KimJJ, PatelKD, PerezRA, JangJH, et al. Osteopromoting Reservoir of Stem Cells: Bioactive Mesoporous Nanocarrier/Collagen Gel through Slow-Releasing FGF18 and the Activated BMP Signaling. ACS Appl Mater Interfaces. 2016;8(41):27573–84. 101. ParkJ, LeeSJ, ChungS, LeeJH, KimWD, LeeJY, et al. Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: Characterization and evaluation. Mater Sci Eng C. 2017;71:678–84. 102. WangC, ZhaoQ, WangM. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering. Biofabrication. 2017;9(2). 103. YeX, LeeflangS, WuC, ChangJ, ZhouJ, HuanZ. Mesoporous bioactive glass functionalized 3D Ti-6Al-4V Scaffolds with improved surface bioactivity. Materials (Basel). 2017;10(11). 104. IbrahimNF, MohamadH, Mohd NoorSNF, AhmadN. Apatite formation on melt-derived bioactive glass powder based on SiO2-CaO-Na2O-P2O5 system. Ceram Int. 2017;43(15):11676–85. 105. LaiWY, ChenYW, KaoCT, HsuTT, HuangTH, ShieMY. Human dental pulp cells responses to apatite precipitation from dicalcium silicates. Materials (Basel). 2015;8(7):4491–504. 106. LiuX, DingC, ChuPK. Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials. 2004;25(10):1755–61. 107. LiuCH, HuangTH, HungCJ, LaiWY, KaoCT, ShieMY. The synergistic effects of fibroblast growth factor-2 and mineral trioxide aggregate on an osteogenic accelerator in vitro. Int Endod J. 2014;47(9):843–53. 108. ZhangY, HuangC, ChangJ. Ca-Doped mesoporous SiO2/dental resin composites with enhanced mechanical properties, bioactivity and antibacterial properties. J Mater Chem B. 2018;6:477-486
|