跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 07:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪暉程
研究生(外文):Huei-Cheng Hong
論文名稱:總體經驗模態分解法(EEMD)結合自回歸(AR)模型在旋轉機械之元件鬆脫故障診斷之應用
論文名稱(外文):Applications of Ensemble Empirical Mode Decomposition (EEMD) and Auto-Regressive (AR) Model for Diagnosing Looseness Faults of Rotating Machinery
指導教授:黃衍任吳天堯
指導教授(外文):Yean-ren HwangTian-yau Wu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:95
中文關鍵詞:後處理總體經驗模態分解法重要性測試自回歸模型自相關函數故障診斷希爾伯特黃轉換總體經驗模態分解法經驗模態分解法
外文關鍵詞:Fault DiagnosingEMDHHTAuto-RegressiveACFAR modelSignificance testpost-processing of EEMDEEMD
相關次數:
  • 被引用被引用:20
  • 點閱點閱:1485
  • 評分評分:
  • 下載下載:203
  • 收藏至我的研究室書目清單書目收藏:0
後處理總體經驗模態分解法可將旋轉機械振動訊號分解成數個無模態混雜的內稟模態函數,運算後的基底波形對稱,符合原始內稟模態函數的要求。對訊號建立自回歸模型則可以對訊號波形的未來發展進行預測,其係數凝聚了系統特質。
本論文結合後處理總體經驗模態分解法與自回歸模型為旋轉機械作出故障診斷。以自相關係數為輔助,針對後處理總體經驗模態分解法得到的內稟模態函數作出分析,挑選有意義的內稟模態函數時域波形建立自回歸模型,取其係數作為鬆動故障診斷之依據,並得到良好的診斷效果。
Post processing of Ensemble Empirical Mode Decomposition (EEMD) can be utilized to decompose the vibration signals of rotating machinery into finite number of Intrinsic Mode Functions (IMFs) without mode mixing problem. The basis of the post processing of EEMD will satisfy the well-defined conditions of IMF. The Autoregressive (AR) model of information-contained IMFs can be used to predict the unmeasured vibration signal, and the coefficients of AR model represent the feature of systematic dynamic behavior.
In this paper, the post-processing of EEMD combining the AR model is proposed for diagnosing the looseness faults at different conponents of rotating machinery. The information-contained IMFs are selected to build the AR model. The looseness types are identified by analyzing the coefficients of AR model. The effectiveness of the proposed method is validated through the analysis of the experimental data.
中文提要 ……………………………………………………………… i
英文提要 ……………………………………………………………… ii
誌謝 ……………………………………………………………… iii
目錄 ……………………………………………………………… iv
圖目錄 ……………………………………………………………… v
表目錄 ……………………………………………………………… x
第一章 緒論………………………………………………………… 1
1.1 前言………………………………………………………… 1
1.2 研究動機…………………………………………………… 3
1.3 文獻回顧…………………………………………………… 4
1.4 研究內容與大綱…………………………………………… 8
第二章 HHT理論基礎……………………………………………… 10
2.1 希爾伯特黃轉換(Hilbert-Huang Transform, HHT)………… 10
2.2 經驗模態分解法(Empirical Mode Decomposition, EMD)… 11
2.3 總體經驗模態分解法(Ensemble EMD,EEMD)與後處理總
體經驗模態分解法(post-processing of EEMD) …………… 19
2.4 Hilbert轉換………………………………………………… 25
2.5 Significance test…………………………………………… 27
2.6 HHT之特性………………………………………………… 29
第三章 時間序列分析概說………………………………………… 31
3.1 自回歸模型(Autoregressive model ,AR model)…………… 31
3.2 自相關函數(Autocorrelation Function, ACF)……………… 38
第四章 實驗架構及實驗方法……………………………………… 41
4.1 實驗說明…………………………………………………… 41
4.2 指標………………………………………………………… 45
第五章 資料性質分析及故障診斷實例…………………………… 47
5.1 正弦模擬訊號……………………………………………… 47
5.2 振動訊號1…………………………………………………… 51
5.3 振動訊號2…………………………………………………… 57
5.4 振幅調製現象之觀察……………………………………… 68
5.5 IMF性質之分析…………………………………………… 73
5.6 故障診斷實例……………………………………………… 85
第六章 結論與未來研究…………………………………………… 91
參考文獻 93
Chen, H, G., Yan, Y. J. and Jiang, J. S., (2007), “Vibration-based damage detection in composite wingbox structures by HHT,” Mechanical Systems and Signal Processing, Vol. 21, pp. 307–321.
Cheng, J., Yu, D. and Yang, Y., (2006), “A fault diagnosis approach for roller bearings based on EMD method and AR model,” Mechanical Systems and Signal Processing, Vol. 20, pp. 350–362.
Flandrin, P., Rilling, G. and Gon?calv`es, P., (2004), “Empirical mode decomposition as a filterbank,” IEEE Signal Processing Letters, Vol. 11, pp. 112–114.
Huang, N. E., (2008), Class note of “Introduction to HHT”, Research Center for Adaptive Data Analysis, National Central University, Web site: http://rcada.ncu.edu.tw/
Huang, N. E., Shen, Z., Long, S. R., Wu, M., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H., (1998), “The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society A, Vol. 454, pp. 903–995.
Huang, N. E., Shen, Z., Long, S. R., (1999), “A new view of nonlinear water waves: the Hilbert spectrum,” Annual Review of Fluid Mechanics, Vol. 31, pp. 417–457.
Huang, N. E., Wu, Z., Long, S. R., Arnold, K., C, Chen, X. and Blank, K., (2009), “On instantaneous frequency,” Advances in Adaptive Data Analysis, Vol. 1, No. 2, pp. 177–229.
Wu, T. Y., Chung, Y. L. and Huang, K. H., (2008), “EEMD Based technique for Identifying Looseness of Rotating Machinery through Analyzing Marginal Hilbert Spectrum,” The 32nd National Conference on Theoretical and Applied Mechanics, H018.
Wu, Z. and Huang, N. E., (2004), “A study of the characteristics of white noise using the Empirical Mode Decomposition method,” Proceedings of the Royal Society A, Vol. 460, pp. 1597–1611.
Wu, Z. and Huang, N. E., (2005), “Ensemble empirical mode decomposition: A noise-assisted data analysis method,” Center for Ocean-Land-Atmosphere Studies, Technical Report series, Vol. 193, No.173.
Wu, Z. and Huang, N. E., (2009), “Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method,” Advances in Adaptive Data Analysis, Vol. 1, No. 1, pp. 1–41.
Yang, Y., Yu, D. and Cheng, J., (2007), “A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM,” Measurement, Vol. 40, pp. 943–950.
Yu, D., Cheng, J. and Yang, Y., (2005), “Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings,” Mechanical Systems and Signal Processing, Vol. 19, pp. 259–270.
于德介、程軍聖、楊宇編(2006),機械故障診斷的Hilbert-Huang變換方法,科學出版社。
吳柏林(1995),時間序列分析導論,華泰書局。
張善文、雷英傑、馮有前(2007),MATLAB在時間序列分析中的應用, 西安電子科技大學出版社。
虞和濟(1989),故障診斷之基本原理,冶金工業出版社。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊