跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱冠伍
論文名稱:硫化鋅/聚苯胺與硫化鋅/石墨烯複合材料之光催化產氫效能
論文名稱(外文):Photocatalytic hydrogen production performance of ZnS/polyaniline and ZnS/graphene composite
指導教授:張棋榕
口試委員:黃華宗吳志明
口試日期:2015-07-17
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:95
中文關鍵詞:光觸媒鎳摻雜核殼結構產氫硫化鋅聚苯胺石墨烯
相關次數:
  • 被引用被引用:0
  • 點閱點閱:346
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用Graphene@ZnS和polyaniline/ZnS (P-ZnS) 奈米粒子光觸媒作為產氫的媒介,在第一部份,硫化鋅為核,用醋酸鋅和硫脲作為前驅物並以水熱法製備, 再以聚苯胺包覆在硫化鋅外層成為新的光觸媒,並以冷場發掃描式電子顯微鏡、X射線繞射分析儀、高解析電子顯微鏡、能量散佈光譜儀、化學分析電子能譜儀、反射式可見光光譜儀、產氫測試。以光觸媒分解犧牲劑產生氫氣,P-ZnS光觸媒能達到 6430 μmol h-1 g-1的產率。回收的光觸媒仍保有好的活性,回收觸媒三次後還是可以維持不錯的產氫效率。
第二部分中,硫化鋅為殼、石墨烯為核來製備光觸媒,石墨烯/摻雜鎳的硫化鋅光觸媒也以水熱法製備,摻雜後幫助電子電洞對的分離來加強光觸媒活性,從能量散佈光譜儀可在光觸媒中發現微量鎳的成分,鎳的摻雜有助於光誘發電子/電洞對的分離,表面積的增加有助於光觸媒與犧牲劑的接觸面積,未摻雜的石墨烯/硫化鋅光觸媒有5967 μmol h-1 g-1的產率,摻雜後的石墨烯/硫化鋅光觸媒摻雜鎳後產率可到達8683 μmol h-1g-1. 我們研究硫化鋅摻雜石墨烯後的表面化學、結晶性、光學性質、表面型態和光觸媒產氫的性質,以鎳摻雜硫化鋅修飾在石墨烯表面有助於使光觸媒形成好的分散性、增加表面積、好的吸收度和強化光電子/電洞對分離效果來增加光觸媒活性。
關鍵字: 光觸媒, 產氫, 硫化鋅, 聚苯胺, 石墨烯, 核殼結構, 鎳摻雜
Graphene@ZnS and polyaniline/ZnS (P-ZnS) nanoparticle were use as hydrogen production photocatalysts. In first part, ZnS nanoparticles were prepared as the core material by a solvothermal process with zinc acetate and thiourea as precursors. ZnS nanoparticles were encapsulated by polyaniline to make the composite photocatalysts. Properties of the photocatalysts were characterized by field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible diffuse reflectance spectroscopy (DRS), photoinduced current, and photocatalytic hydrogen evolution test. The photocatalytic activity of the catalysts was evaluated by splitting Na2S/Na2SO3 solution into H2. The optimized photocatalytic hydrogen production rates of P-ZnS nanoparticles reach 6430 μmol h-1 g-1, respectively. All the photocatalysts can be recycled. Recycled photocatalysts exhibit good hydrogen generation performance after being recycled for three times.
In second part, ZnS which mentioned above is use as the shell which fabricate on graphene nanosheet. Ni-doped graphene@ZnS photocatalysts for photocatalytic hydrogen production was also prepared by a solvothermal method. Doped Ni helps the separation of
the photon induced electron and hole pairs, hence enhances the photocatalytic activity. Energy- dispersive X-ray spectroscopy (EDX) analysis indicated that a small amount of Ni is loaded on the ZnS. Because of increased surface area of ZnS layer, enhanced separation of the photoinduced carriers by Ni-doping, and effective contact among sacrificial aqueous solution and the ZnS shell, The optimized photocatalytic hydrogen production rates of graphene@ZnS nanoparticles reach 5967 μmol h-1 g-1. And the graphene@Ni-doped ZnS nanocomposites are highly active photocatalysts for hydrogen evolution and the highest photocatalytic activity reaches 8683 μmol h-1g-1. Effects of introducing graphene, doping, and decorated ZnS on the surface chemistry, crystalline property, optical property, surface morphology, and photocatalytic hydrogen production performance were studied. Ni-doping and decorated ZnS on graphene improved the photocatalytic H2 production activity because of improved dispersing property, increased surface area, increased absorption, and enhanced transfer of photogenerated electrons.
Keywords: Photocatalysts, H2 Production, ZnS, PANI, Graphene, Core-shell, ZnS, graphene, Ni2+-doping
Content
摘要 II
ABSTRACT IV
CONTENT VII
FIGURE CONTENT IX
TABLE CONTENT XII

PART I GENERAL INTRODUCTION 1
CHAPTER 1 BACKGROUND AND MOTIVATION 1
1.1 Energy Shortage and Related Environment Concern 1
1.2 Hydrogen production 3
1.3 Water Spliting 5
CHAPTER 2 INTRODUCTION OF PHOTOCATALYST 6
2.1 Application of Photocatalyst 6
2.2 Conducting polymer 10
2.3 Graphene 17
2.4 Recycling of Photocatalysts 21
MOTIVATION 23
PART II METHODS 24
CHAPTER 3 EXPERIMENTAL METHODS AND PROCEDURES 24
3.1 Materials 24
3.2 Instrument 25
3.3 PREPARATION OF DOPED ZNS DECORATED GRAPHENE PHOTOCATALYSTS 26
3.4 PREPARATION OF P-ZNS COMPOSITE PHOTOCATALYST 27
3.5 Photocatalytic hydrogen production 28
3.6 Preparation of samples for photoelectrochemical test 28
3.7 Characterization 29
3.8 Nomenclature 30
3.8.1 Graphene@ZnS 30
3.8.2 ZnS@PANI 30
PART III RESULTS AND DISCUSSION 31
CHAPTER 4 POLYANILINE ENCAPSULATED ZNS AS PHOTOCATALYSTS FOR H2 PRODUCTION. 31
4.1. SURFACE MORPHOLOGY 31
4.2. Crystalline properties 35
4.3. Chemical property 37
4.4. Optical properties (DRS) 40
4.6. Dispersing stability 44
4.7. The reusability of photocatalyst 46
CHAPTER 5 ZNS DECORATED GRAPHENE AS PHOTOCATALYSTS 49
5.1. Surface morphology and dispersing property 49
5.2. Surface chemistry and crystal structure 54
5.3. Optical property 58
5.4. BET Surface Area 59
5.5. Photocatalytic H2 production activity and stability 62
5.6. Photoelectrochemical (PEC) property 67
CONCLUSION 70
REFERENCE 72
Reference
(1)Serrano, D. P.; Calleja, G.; Pizarro, P.; Gálvez, P. Enhanced photocatalytic hydrogen production by improving the Pt dispersion over mesostructured TiO2. International Journal of Hydrogen Energy 2014, 39, 4812-4819.
(2)Hong, E.; Kim, J. H. Oxide content optimized ZnS–ZnO heterostructures via facile thermal treatment process for enhanced photocatalytic hydrogen production. International Journal of Hydrogen Energy 2014, 39, 9985-9993.
(3)Chang, C.-J.; Hsu, M.-H.; Weng, Y.-C.; Tsay, C.-Y.; Lin, C.-K. Hierarchical ZnO nanorod-array films with enhanced photocatalytic performance. Thin Solid Films 2013, 528, 167-174.
(4)Hung, S.-T.; Chang, C.-J.; Hsu, M.-H. Improved photocatalytic performance of ZnO nanograss decorated pore-array films by surface texture modification and silver nanoparticle deposition. Journal of Hazardous Materials 2011, 198, 307-316.
(5)Chou, P.-C.; Chen, H.-I.; Liu, I. P.; Chen, C.-C.; Liou, J.-K.; Hsu, K.-S.; Liu, W.-C. Hydrogen sensing performance of a nickel oxide (NiO) thin film-based device. International Journal of Hydrogen Energy 2015, 40, 729-734.
(6)Hung, S.-T.; Chang, C.-J.; Hsu, C.-H.; Chu, B. H.; Lo, C. F.; Hsu, C.-C.; Pearton, S. J.; Holzworth, M. R.; Whiting, P. G.; Rudawski, N. G.; Jones, K. S.; Dabiran, A.; Chow, P.; Ren, F. SnO2 functionalized AlGaN/GaN high electron mobility transistor for hydrogen sensing applications. International Journal of Hydrogen Energy 2012, 37, 13783-13788.
(7)Wang, Y.; Wang, Y.; Xu, R. Photochemical Deposition of Pt on CdS for H2 Evolution from Water: Markedly Enhanced Activity by Controlling Pt Reduction Environment. The Journal of Physical Chemistry C 2013, 117, 783-790.
(8)Xiang, Q.; Cheng, B.; Yu, J. Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H2-production performance. Applied Catalysis B: Environmental 2013, 138–139, 299-303.
(9)Jin, J.; Yu, J.; Liu, G.; Wong, P. K. Single crystal CdS nanowires with high visible-light photocatalytic H2-production performance. Journal of Materials Chemistry A 2013, 1, 10927-10934.
(10)Chai, B.; Peng, T.; Zhang, X.; Mao, J.; Li, K.; Zhang, X. Synthesis of C60-decorated SWCNTs (C60-d-CNTs) and its TiO2-based nanocomposite with enhanced photocatalytic activity for hydrogen production. Dalton Transactions 2013, 42, 3402-3409.
(11)Chang, C.-J.; Lee, Z.; Wang, C.-F. Photocatalytic hydrogen production by stainless steel@ZnS core–shell wire mesh photocatalyst from saltwater. International Journal of Hydrogen Energy 2014, 39, 20754-20763.
(12)Hong, Y.; Zhang, J.; Wang, X.; Wang, Y.; Lin, Z.; Yu, J.; Huang, F. Influence of lattice integrity and phase composition on the photocatalytic hydrogen production efficiency of ZnS nanomaterials. Nanoscale 2012, 4, 2859-2862.
(13)Preethi, V.; Kanmani, S. Photocatalytic hydrogen production using Fe2O3-based core shell nano particles with ZnS and CdS. International Journal of Hydrogen Energy 2014, 39, 1613-1622.
(14)Burda, C.; Lou, Y.; Chen, X.; Samia, A. C. S.; Stout, J.; Gole, J. L. Enhanced Nitrogen Doping in TiO2 Nanoparticles. Nano Letters 2003, 3, 1049-1051.
(15)Wang, F.; Jiang, Y.; Gautam, A.; Li, Y.; Amal, R. Exploring the Origin of Enhanced Activity and Reaction Pathway for Photocatalytic H2 Production on Au/B-TiO2 Catalysts. ACS Catalysis 2014, 4, 1451-1457.
(16)Dholam, R.; Patel, N.; Adami, M.; Miotello, A. Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. International Journal of Hydrogen Energy 2009, 34, 5337-5346.
(17)Hsu, M.-H.; Chang, C.-J. S-doped ZnO nanorods on stainless-steel wire mesh as immobilized hierarchical photocatalysts for photocatalytic H2 production. International Journal of Hydrogen Energy 2014, 39, 16524-16533.
(18)Tatsuma, T.; Saitoh, S.; Ngaotrakanwiwat, P.; Ohko, Y.; Fujishima, A. Energy Storage of TiO2−WO3 Photocatalysis Systems in the Gas Phase. Langmuir 2002, 18, 7777-7779.
(19)Hirakawa, T.; Kamat, P. V. Charge Separation and Catalytic Activity of Ag@TiO2 Core−Shell Composite Clusters under UV−Irradiation. Journal of the American Chemical Society 2005, 127, 3928-3934.
(20)Zhang, L.-W.; Fu, H.-B.; Zhu, Y.-F. Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite-like Carbon. Advanced Functional Materials 2008, 18, 2180-2189.
(21)Li, J.-Y.; Jiang, X.; Lin, L.; Zhou, J.-J.; Xu, G.-S.; Yuan, Y.-P. Improving the photocatalytic performance of polyimide by constructing an inorganic-organic hybrid ZnO-polyimide core–shell structure. Journal of Molecular Catalysis A: Chemical 2015, 406, 46-50.
(22)Shang, J.; Chai, M.; Zhu, Y. Photocatalytic Degradation of Polystyrene Plastic under Fluorescent Light. Environmental Science & Technology 2003, 37, 4494-4499.
(23)Kulszewicz-Bajer, I.; Proń, A.; Abramowicz, J.; Jeandey, C.; Oddou, J.-L.; Sobczak, J. W. Lewis Acid Doped Polyaniline:  Preparation and Spectroscopic Characterization. Chemistry of Materials 1999, 11, 552-556.
(24)Li, D.; Huang, J.; Kaner, R. B. Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications. Accounts of Chemical Research 2009, 42, 135-145.
(25)Li, G.; Jiang, L.; Peng, H. One-Dimensional Polyaniline Nanostructures with Controllable Surfaces and Diameters Using Vanadic Acid as the Oxidant. Macromolecules 2007, 40, 7890-7894.
(26)Zhang, H.; Zong, R.; Zhao, J.; Zhu, Y. Dramatic Visible Photocatalytic Degradation Performances Due to Synergetic Effect of TiO2 with PANI. Environmental Science & Technology 2008, 42, 3803-3807.
(27)Guo, N.; Liang, Y.; Lan, S.; Liu, L.; Zhang, J.; Ji, G.; Gan, S. Microscale Hierarchical Three-Dimensional Flowerlike TiO2/PANI Composite: Synthesis, Characterization, and Its Remarkable Photocatalytic Activity on Organic Dyes under UV-Light and Sunlight Irradiation. The Journal of Physical Chemistry C 2014, 118, 18343-18355.
(28)Zhang, H.; Zong, R.; Zhu, Y. Photocorrosion Inhibition and Photoactivity Enhancement for Zinc Oxide via Hybridization with Monolayer Polyaniline. The Journal of Physical Chemistry C 2009, 113, 4605-4611.
(29)Zhang, S.; Chen, Q.; Jing, D.; Wang, Y.; Guo, L. Visible photoactivity and antiphotocorrosion performance of PdS–CdS photocatalysts modified by polyaniline. International Journal of Hydrogen Energy 2012, 37, 791-796.
(30)Wang, X.; Chen, G.; Zhang, J. RETRACTED: Synthesis and characterization of novel Cu2O/PANI composite photocatalysts with enhanced photocatalytic activity and stability. Catalysis Communications 2013, 31, 57-61.
(31)Hou, J.; Cao, R.; Jiao, S.; Zhu, H.; Kumar, R. V. PANI/Bi12TiO20 complex architectures: Controllable synthesis and enhanced visible-light photocatalytic activities. Applied Catalysis B: Environmental 2011, 104, 399-406.
(32)Shang, M.; Wang, W.; Sun, S.; Ren, J.; Zhou, L.; Zhang, L. Efficient Visible Light-Induced Photocatalytic Degradation of Contaminant by Spindle-like PANI/BiVO4. The Journal of Physical Chemistry C 2009, 113, 20228-20233.
(33)Nguyen-Huy, C.; Kim, N.; Nguyen-Phan, T.-D.; Yoo, I.-K.; Woo Shin, E. Adsorptive interaction of bisphenol A with mesoporous titanosilicate/reduced graphene oxide nanocomposite materials: FT-IR and Raman analyses. Nanoscale Research Letters 2014, 9, 1-7.
(34)Jiang, B.; Tian, C.; Zhou, W.; Wang, J.; Xie, Y.; Pan, Q.; Ren, Z.; Dong, Y.; Fu, D.; Han, J.; Fu, H. In Situ Growth of TiO2 in Interlayers of Expanded Graphite for the Fabrication of TiO2–Graphene with Enhanced Photocatalytic Activity. Chemistry – A European Journal 2011, 17, 8379-8387.
(35)Liang, Y. T.; Vijayan, B. K.; Gray, K. A.; Hersam, M. C. Minimizing Graphene Defects Enhances Titania Nanocomposite-Based Photocatalytic Reduction of CO2 for Improved Solar Fuel Production. Nano Letters 2011, 11, 2865-2870.
(36)Williams, G.; Seger, B.; Kamat, P. V. TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano 2008, 2, 1487-1491.
(37)Zhang, N.; Zhang, Y.; Xu, Y.-J. Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 2012, 4, 5792-5813.
(38)An, X.; Yu, J. C. Graphene-based photocatalytic composites. RSC Advances 2011, 1, 1426-1434.
(39)Xiang, Q.; Yu, J.; Jaroniec, M. Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites. The Journal of Physical Chemistry C 2011, 115, 7355-7363.
(40)Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R. Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting. The Journal of Physical Chemistry Letters 2010, 1, 2607-2612.
(41)Ye, A.; Fan, W.; Zhang, Q.; Deng, W.; Wang, Y. CdS-graphene and CdS-CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation. Catalysis Science & Technology 2012, 2, 969-978.
(42)Wang, F.; Zhang, K. Reduced graphene oxide–TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. Journal of Molecular Catalysis A: Chemical 2011, 345, 101-107.
(43)Jia, L.; Wang, D.-H.; Huang, Y.-X.; Xu, A.-W.; Yu, H.-Q. Highly Durable N-Doped Graphene/CdS Nanocomposites with Enhanced Photocatalytic Hydrogen Evolution from Water under Visible Light Irradiation. The Journal of Physical Chemistry C 2011, 115, 11466-11473.
(44)Li, Q.; Meng, H.; Yu, J.; Xiao, W.; Zheng, Y.; Wang, J. Enhanced Photocatalytic Hydrogen-Production Performance of Graphene–ZnxCd1−xS Composites by Using an Organic S Source. Chemistry – A European Journal 2014, 20, 1176-1185.
(45)Zhang, X.; Sun, Y.; Cui, X.; Jiang, Z. A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution. International Journal of Hydrogen Energy 2012, 37, 811-815.
(46)Cheng, P.; Yang, Z.; Wang, H.; Cheng, W.; Chen, M.; Shangguan, W.; Ding, G. TiO2–graphene nanocomposites for photocatalytic hydrogen production from splitting water. International Journal of Hydrogen Energy 2012, 37, 2224-2230.
(47)Lu, Y.; Shang, H.; Shi, F.; Chao, C.; Zhang, X.; Zhang, B. Preparation and efficient visible light-induced photocatalytic activity of m-BiVO4 with different morphologies. Journal of Physics and Chemistry of Solids 2015, 85, 44-50.
(48)Yan, Y.; Wang, C.; Yan, X.; Xiao, L.; He, J.; Gu, W.; Shi, W. Graphene Acting as Surface Phase Junction in Anatase–Graphene–Rutile Heterojunction Photocatalysts for H2 Production from Water Splitting. The Journal of Physical Chemistry C 2014, 118, 23519-23526.
(49)Zhang, J.; Wang, P.; Sun, J.; Jin, Y. High-Efficiency Plasmon-Enhanced and Graphene-Supported Semiconductor/Metal Core–Satellite Hetero-Nanocrystal Photocatalysts for Visible-Light Dye Photodegradation and H2 Production from Water. ACS Applied Materials & Interfaces 2014, 6, 19905-19913.
(50)Chang, C.-J.; Chu, K.-W.; Hsu, M.-H.; Chen, C.-Y. Ni-doped ZnS decorated graphene composites with enhanced photocatalytic hydrogen-production performance. International Journal of Hydrogen Energy.
(51)Tsai, M.-H.; Chang, C.-J.; Lu, H.-H.; Liao, Y.-F.; Tseng, I. H. Properties of magnetron-sputtered moisture barrier layer on transparent polyimide/graphene nanocomposite film. Thin Solid Films 2013, 544, 324-330.
(52)Chen, P.; Gu, L.; Xue, X.; Song, Y.; Zhu, L.; Cao, X. Facile synthesis of highly uniform ZnO multipods as the supports of Au and Ag nanoparticles. Materials Chemistry and Physics 2010, 122, 41-48.
(53)Bai, W.; Yu, K.; Zhang, Q.; Zhu, X.; Peng, D.; Zhu, Z.; Dai, N.; Sun, Y. Large-scale synthesis of zinc oxide rose-like structures and their optical properties. Physica E: Low-dimensional Systems and Nanostructures 2008, 40, 822-827.
(54)Hu, H.; Wang, X.; Liu, F.; Wang, J.; Xu, C. Rapid microwave-assisted synthesis of graphene nanosheets–zinc sulfide nanocomposites: Optical and photocatalytic properties. Synthetic Metals 2011, 161, 404-410.
(55)Pan, S.; Liu, X. ZnS–Graphene nanocomposite: Synthesis, characterization and optical properties. Journal of Solid State Chemistry 2012, 191, 51-56.
(56)Xu, C.; Wang, X.; Zhu, J. Graphene−Metal Particle Nanocomposites. The Journal of Physical Chemistry C 2008, 112, 19841-19845.
(57)Kim, K.-S.; Park, S.-J. Electrochemical performance of graphene/carbon electrode contained well-balanced micro- and mesopores by activation-free method. Electrochimica Acta 2012, 65, 50-56.
(58)Zhang, J.; Yu, J.; Jaroniec, M.; Gong, J. R. Noble Metal-Free Reduced Graphene Oxide-ZnxCd1–xS Nanocomposite with Enhanced Solar Photocatalytic H2-Production Performance. Nano Letters 2012, 12, 4584-4589.
(59)Lei, Y.; Chen, F.; Li, R.; Xu, J. A facile solvothermal method to produce graphene-ZnS composites for superior photoelectric applications. Applied Surface Science 2014, 308, 206-210.
(60)Yang, Y.; Liu, E.; Dai, H.; Kang, L.; Wu, H.; Fan, J.; Hu, X.; Liu, H. Photocatalytic activity of Ag–TiO2-graphene ternary nanocomposites and application in hydrogen evolution by water splitting. International Journal of Hydrogen Energy 2014, 39, 7664-7671.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊