|
Reference (1)Serrano, D. P.; Calleja, G.; Pizarro, P.; Gálvez, P. Enhanced photocatalytic hydrogen production by improving the Pt dispersion over mesostructured TiO2. International Journal of Hydrogen Energy 2014, 39, 4812-4819. (2)Hong, E.; Kim, J. H. Oxide content optimized ZnS–ZnO heterostructures via facile thermal treatment process for enhanced photocatalytic hydrogen production. International Journal of Hydrogen Energy 2014, 39, 9985-9993. (3)Chang, C.-J.; Hsu, M.-H.; Weng, Y.-C.; Tsay, C.-Y.; Lin, C.-K. Hierarchical ZnO nanorod-array films with enhanced photocatalytic performance. Thin Solid Films 2013, 528, 167-174. (4)Hung, S.-T.; Chang, C.-J.; Hsu, M.-H. Improved photocatalytic performance of ZnO nanograss decorated pore-array films by surface texture modification and silver nanoparticle deposition. Journal of Hazardous Materials 2011, 198, 307-316. (5)Chou, P.-C.; Chen, H.-I.; Liu, I. P.; Chen, C.-C.; Liou, J.-K.; Hsu, K.-S.; Liu, W.-C. Hydrogen sensing performance of a nickel oxide (NiO) thin film-based device. International Journal of Hydrogen Energy 2015, 40, 729-734. (6)Hung, S.-T.; Chang, C.-J.; Hsu, C.-H.; Chu, B. H.; Lo, C. F.; Hsu, C.-C.; Pearton, S. J.; Holzworth, M. R.; Whiting, P. G.; Rudawski, N. G.; Jones, K. S.; Dabiran, A.; Chow, P.; Ren, F. SnO2 functionalized AlGaN/GaN high electron mobility transistor for hydrogen sensing applications. International Journal of Hydrogen Energy 2012, 37, 13783-13788. (7)Wang, Y.; Wang, Y.; Xu, R. Photochemical Deposition of Pt on CdS for H2 Evolution from Water: Markedly Enhanced Activity by Controlling Pt Reduction Environment. The Journal of Physical Chemistry C 2013, 117, 783-790. (8)Xiang, Q.; Cheng, B.; Yu, J. Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H2-production performance. Applied Catalysis B: Environmental 2013, 138–139, 299-303. (9)Jin, J.; Yu, J.; Liu, G.; Wong, P. K. Single crystal CdS nanowires with high visible-light photocatalytic H2-production performance. Journal of Materials Chemistry A 2013, 1, 10927-10934. (10)Chai, B.; Peng, T.; Zhang, X.; Mao, J.; Li, K.; Zhang, X. Synthesis of C60-decorated SWCNTs (C60-d-CNTs) and its TiO2-based nanocomposite with enhanced photocatalytic activity for hydrogen production. Dalton Transactions 2013, 42, 3402-3409. (11)Chang, C.-J.; Lee, Z.; Wang, C.-F. Photocatalytic hydrogen production by stainless steel@ZnS core–shell wire mesh photocatalyst from saltwater. International Journal of Hydrogen Energy 2014, 39, 20754-20763. (12)Hong, Y.; Zhang, J.; Wang, X.; Wang, Y.; Lin, Z.; Yu, J.; Huang, F. Influence of lattice integrity and phase composition on the photocatalytic hydrogen production efficiency of ZnS nanomaterials. Nanoscale 2012, 4, 2859-2862. (13)Preethi, V.; Kanmani, S. Photocatalytic hydrogen production using Fe2O3-based core shell nano particles with ZnS and CdS. International Journal of Hydrogen Energy 2014, 39, 1613-1622. (14)Burda, C.; Lou, Y.; Chen, X.; Samia, A. C. S.; Stout, J.; Gole, J. L. Enhanced Nitrogen Doping in TiO2 Nanoparticles. Nano Letters 2003, 3, 1049-1051. (15)Wang, F.; Jiang, Y.; Gautam, A.; Li, Y.; Amal, R. Exploring the Origin of Enhanced Activity and Reaction Pathway for Photocatalytic H2 Production on Au/B-TiO2 Catalysts. ACS Catalysis 2014, 4, 1451-1457. (16)Dholam, R.; Patel, N.; Adami, M.; Miotello, A. Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. International Journal of Hydrogen Energy 2009, 34, 5337-5346. (17)Hsu, M.-H.; Chang, C.-J. S-doped ZnO nanorods on stainless-steel wire mesh as immobilized hierarchical photocatalysts for photocatalytic H2 production. International Journal of Hydrogen Energy 2014, 39, 16524-16533. (18)Tatsuma, T.; Saitoh, S.; Ngaotrakanwiwat, P.; Ohko, Y.; Fujishima, A. Energy Storage of TiO2−WO3 Photocatalysis Systems in the Gas Phase. Langmuir 2002, 18, 7777-7779. (19)Hirakawa, T.; Kamat, P. V. Charge Separation and Catalytic Activity of Ag@TiO2 Core−Shell Composite Clusters under UV−Irradiation. Journal of the American Chemical Society 2005, 127, 3928-3934. (20)Zhang, L.-W.; Fu, H.-B.; Zhu, Y.-F. Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite-like Carbon. Advanced Functional Materials 2008, 18, 2180-2189. (21)Li, J.-Y.; Jiang, X.; Lin, L.; Zhou, J.-J.; Xu, G.-S.; Yuan, Y.-P. Improving the photocatalytic performance of polyimide by constructing an inorganic-organic hybrid ZnO-polyimide core–shell structure. Journal of Molecular Catalysis A: Chemical 2015, 406, 46-50. (22)Shang, J.; Chai, M.; Zhu, Y. Photocatalytic Degradation of Polystyrene Plastic under Fluorescent Light. Environmental Science & Technology 2003, 37, 4494-4499. (23)Kulszewicz-Bajer, I.; Proń, A.; Abramowicz, J.; Jeandey, C.; Oddou, J.-L.; Sobczak, J. W. Lewis Acid Doped Polyaniline: Preparation and Spectroscopic Characterization. Chemistry of Materials 1999, 11, 552-556. (24)Li, D.; Huang, J.; Kaner, R. B. Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications. Accounts of Chemical Research 2009, 42, 135-145. (25)Li, G.; Jiang, L.; Peng, H. One-Dimensional Polyaniline Nanostructures with Controllable Surfaces and Diameters Using Vanadic Acid as the Oxidant. Macromolecules 2007, 40, 7890-7894. (26)Zhang, H.; Zong, R.; Zhao, J.; Zhu, Y. Dramatic Visible Photocatalytic Degradation Performances Due to Synergetic Effect of TiO2 with PANI. Environmental Science & Technology 2008, 42, 3803-3807. (27)Guo, N.; Liang, Y.; Lan, S.; Liu, L.; Zhang, J.; Ji, G.; Gan, S. Microscale Hierarchical Three-Dimensional Flowerlike TiO2/PANI Composite: Synthesis, Characterization, and Its Remarkable Photocatalytic Activity on Organic Dyes under UV-Light and Sunlight Irradiation. The Journal of Physical Chemistry C 2014, 118, 18343-18355. (28)Zhang, H.; Zong, R.; Zhu, Y. Photocorrosion Inhibition and Photoactivity Enhancement for Zinc Oxide via Hybridization with Monolayer Polyaniline. The Journal of Physical Chemistry C 2009, 113, 4605-4611. (29)Zhang, S.; Chen, Q.; Jing, D.; Wang, Y.; Guo, L. Visible photoactivity and antiphotocorrosion performance of PdS–CdS photocatalysts modified by polyaniline. International Journal of Hydrogen Energy 2012, 37, 791-796. (30)Wang, X.; Chen, G.; Zhang, J. RETRACTED: Synthesis and characterization of novel Cu2O/PANI composite photocatalysts with enhanced photocatalytic activity and stability. Catalysis Communications 2013, 31, 57-61. (31)Hou, J.; Cao, R.; Jiao, S.; Zhu, H.; Kumar, R. V. PANI/Bi12TiO20 complex architectures: Controllable synthesis and enhanced visible-light photocatalytic activities. Applied Catalysis B: Environmental 2011, 104, 399-406. (32)Shang, M.; Wang, W.; Sun, S.; Ren, J.; Zhou, L.; Zhang, L. Efficient Visible Light-Induced Photocatalytic Degradation of Contaminant by Spindle-like PANI/BiVO4. The Journal of Physical Chemistry C 2009, 113, 20228-20233. (33)Nguyen-Huy, C.; Kim, N.; Nguyen-Phan, T.-D.; Yoo, I.-K.; Woo Shin, E. Adsorptive interaction of bisphenol A with mesoporous titanosilicate/reduced graphene oxide nanocomposite materials: FT-IR and Raman analyses. Nanoscale Research Letters 2014, 9, 1-7. (34)Jiang, B.; Tian, C.; Zhou, W.; Wang, J.; Xie, Y.; Pan, Q.; Ren, Z.; Dong, Y.; Fu, D.; Han, J.; Fu, H. In Situ Growth of TiO2 in Interlayers of Expanded Graphite for the Fabrication of TiO2–Graphene with Enhanced Photocatalytic Activity. Chemistry – A European Journal 2011, 17, 8379-8387. (35)Liang, Y. T.; Vijayan, B. K.; Gray, K. A.; Hersam, M. C. Minimizing Graphene Defects Enhances Titania Nanocomposite-Based Photocatalytic Reduction of CO2 for Improved Solar Fuel Production. Nano Letters 2011, 11, 2865-2870. (36)Williams, G.; Seger, B.; Kamat, P. V. TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano 2008, 2, 1487-1491. (37)Zhang, N.; Zhang, Y.; Xu, Y.-J. Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 2012, 4, 5792-5813. (38)An, X.; Yu, J. C. Graphene-based photocatalytic composites. RSC Advances 2011, 1, 1426-1434. (39)Xiang, Q.; Yu, J.; Jaroniec, M. Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites. The Journal of Physical Chemistry C 2011, 115, 7355-7363. (40)Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R. Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting. The Journal of Physical Chemistry Letters 2010, 1, 2607-2612. (41)Ye, A.; Fan, W.; Zhang, Q.; Deng, W.; Wang, Y. CdS-graphene and CdS-CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation. Catalysis Science & Technology 2012, 2, 969-978. (42)Wang, F.; Zhang, K. Reduced graphene oxide–TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. Journal of Molecular Catalysis A: Chemical 2011, 345, 101-107. (43)Jia, L.; Wang, D.-H.; Huang, Y.-X.; Xu, A.-W.; Yu, H.-Q. Highly Durable N-Doped Graphene/CdS Nanocomposites with Enhanced Photocatalytic Hydrogen Evolution from Water under Visible Light Irradiation. The Journal of Physical Chemistry C 2011, 115, 11466-11473. (44)Li, Q.; Meng, H.; Yu, J.; Xiao, W.; Zheng, Y.; Wang, J. Enhanced Photocatalytic Hydrogen-Production Performance of Graphene–ZnxCd1−xS Composites by Using an Organic S Source. Chemistry – A European Journal 2014, 20, 1176-1185. (45)Zhang, X.; Sun, Y.; Cui, X.; Jiang, Z. A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution. International Journal of Hydrogen Energy 2012, 37, 811-815. (46)Cheng, P.; Yang, Z.; Wang, H.; Cheng, W.; Chen, M.; Shangguan, W.; Ding, G. TiO2–graphene nanocomposites for photocatalytic hydrogen production from splitting water. International Journal of Hydrogen Energy 2012, 37, 2224-2230. (47)Lu, Y.; Shang, H.; Shi, F.; Chao, C.; Zhang, X.; Zhang, B. Preparation and efficient visible light-induced photocatalytic activity of m-BiVO4 with different morphologies. Journal of Physics and Chemistry of Solids 2015, 85, 44-50. (48)Yan, Y.; Wang, C.; Yan, X.; Xiao, L.; He, J.; Gu, W.; Shi, W. Graphene Acting as Surface Phase Junction in Anatase–Graphene–Rutile Heterojunction Photocatalysts for H2 Production from Water Splitting. The Journal of Physical Chemistry C 2014, 118, 23519-23526. (49)Zhang, J.; Wang, P.; Sun, J.; Jin, Y. High-Efficiency Plasmon-Enhanced and Graphene-Supported Semiconductor/Metal Core–Satellite Hetero-Nanocrystal Photocatalysts for Visible-Light Dye Photodegradation and H2 Production from Water. ACS Applied Materials & Interfaces 2014, 6, 19905-19913. (50)Chang, C.-J.; Chu, K.-W.; Hsu, M.-H.; Chen, C.-Y. Ni-doped ZnS decorated graphene composites with enhanced photocatalytic hydrogen-production performance. International Journal of Hydrogen Energy. (51)Tsai, M.-H.; Chang, C.-J.; Lu, H.-H.; Liao, Y.-F.; Tseng, I. H. Properties of magnetron-sputtered moisture barrier layer on transparent polyimide/graphene nanocomposite film. Thin Solid Films 2013, 544, 324-330. (52)Chen, P.; Gu, L.; Xue, X.; Song, Y.; Zhu, L.; Cao, X. Facile synthesis of highly uniform ZnO multipods as the supports of Au and Ag nanoparticles. Materials Chemistry and Physics 2010, 122, 41-48. (53)Bai, W.; Yu, K.; Zhang, Q.; Zhu, X.; Peng, D.; Zhu, Z.; Dai, N.; Sun, Y. Large-scale synthesis of zinc oxide rose-like structures and their optical properties. Physica E: Low-dimensional Systems and Nanostructures 2008, 40, 822-827. (54)Hu, H.; Wang, X.; Liu, F.; Wang, J.; Xu, C. Rapid microwave-assisted synthesis of graphene nanosheets–zinc sulfide nanocomposites: Optical and photocatalytic properties. Synthetic Metals 2011, 161, 404-410. (55)Pan, S.; Liu, X. ZnS–Graphene nanocomposite: Synthesis, characterization and optical properties. Journal of Solid State Chemistry 2012, 191, 51-56. (56)Xu, C.; Wang, X.; Zhu, J. Graphene−Metal Particle Nanocomposites. The Journal of Physical Chemistry C 2008, 112, 19841-19845. (57)Kim, K.-S.; Park, S.-J. Electrochemical performance of graphene/carbon electrode contained well-balanced micro- and mesopores by activation-free method. Electrochimica Acta 2012, 65, 50-56. (58)Zhang, J.; Yu, J.; Jaroniec, M.; Gong, J. R. Noble Metal-Free Reduced Graphene Oxide-ZnxCd1–xS Nanocomposite with Enhanced Solar Photocatalytic H2-Production Performance. Nano Letters 2012, 12, 4584-4589. (59)Lei, Y.; Chen, F.; Li, R.; Xu, J. A facile solvothermal method to produce graphene-ZnS composites for superior photoelectric applications. Applied Surface Science 2014, 308, 206-210. (60)Yang, Y.; Liu, E.; Dai, H.; Kang, L.; Wu, H.; Fan, J.; Hu, X.; Liu, H. Photocatalytic activity of Ag–TiO2-graphene ternary nanocomposites and application in hydrogen evolution by water splitting. International Journal of Hydrogen Energy 2014, 39, 7664-7671.
|