|
(1) Chen, C. W.; Kang, H. W.; Hsiao, S. Y.; Yang, P. F.; Chiang, K. M.; Lin, H. W. Efficient and uniform planar‐type perovskite solar cells by simple sequential vacuum deposition. Advanced Materials 2014, 26 (38), 6647-6652. (2) Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters 2008, 9 (1), 30-35. (3) Lee, K.-Y.; Liu, L.-D.; Ta-Jo, L. Minimum wet thickness in extrusion slot coating. Chemical Engineering Science 1992, 47 (7), 1703-1713. (4) Hall, D. B.; Underhill, P.; Torkelson, J. M. Spin coating of thin and ultrathin polymer films. Polymer Engineering & Science 1998, 38 (12), 2039-2045. (5) Espinosa, N.; García-Valverde, R.; Urbina, A.; Lenzmann, F.; Manceau, M.; Angmo, D.; Krebs, F. C. Life cycle assessment of ITO-free flexible polymer solar cells prepared by roll-to-roll coating and printing. Solar Energy Materials and Solar Cells 2012, 97, 3-13. (6) Nasr-Esfahani, M.; Habibi, M. H. Silver doped TiO2 nanostructure composite photocatalyst film synthesized by sol-gel spin and dip coating technique on glass. International Journal of Photoenergy 2008, 2008. (7) Jonza, J. M.; Weber, M. F.; Ouderkirk, A. J.; Stover, C. A., Optical film. Google Patents: 1999. (8) Cioarec, C.; Melpignano, P.; Gherardi, N.; Clergereaux, R.; Villeneuve, C. Ultrasmooth silver thin film electrodes with high polar liquid wettability for OLED microcavity application. Langmuir 2011, 27 (7), 3611-3617. (9) Nam, K. T.; Kim, D.-W.; Yoo, P. J.; Chiang, C.-Y.; Meethong, N.; Hammond, P. T.; Chiang, Y.-M.; Belcher, A. M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. science 2006, 312 (5775), 885-888. (10) Cisneros‐Zevallos, L.; Krochta, J. Dependence of coating thickness on viscosity of coating solution applied to fruits and vegetables by dipping method. Journal of Food Science 2003, 68 (2), 503-510. (11) Lu, Y.; Ganguli, R.; Drewien, C. A.; Anderson, M. T.; Brinker, C. J.; Gong, W.; Guo, Y.; Soyez, H.; Dunn, B.; Huang, M. H. Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature 1997, 389 (6649), 364. (12) Strawbridge, I.; James, P. The factors affecting the thickness of sol-gel derived silica coatings prepared by dipping. Journal of non-crystalline solids 1986, 86 (3), 381-393. (13) Processes of dip coating. http://www.dip-coater.com/english/about_dip_coating.html. (14) Nwaogu, U. C.; Tiedje, N. S. Foundry coating technology: a review. Materials Sciences and Applications 2011, 2 (8), 1143-1160. (15) Brinker, C.; Frye, G.; Hurd, A.; Ashley, C. Fundamentals of sol-gel dip coating. Thin solid films 1991, 201 (1), 97-108. (16) Scriven, L. Physics and applications of dip coating and spin coating. MRS Online Proceedings Library Archive 1988, 121. (17) Falk, Y. Z.; Schmitt, J.; Alfredsson, V. Langmuir–Blodgett monolayers of SBA-15 particles with different morphologies. Microporous and Mesoporous Materials 2018, 256, 32-38. (18) Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Langmuir− Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano letters 2003, 3 (9), 1229-1233. (19) Zhang, Y.; Xu, L.; Walker, W. R.; Tittle, C. M.; Backhouse, C. J.; Pope, M. A. Langmuir films and uniform, large area, transparent coatings of chemically exfoliated MoS 2 single layers. Journal of Materials Chemistry C 2017, 5 (43), 11275-11287. (20) Ejaz, M.; Yamamoto, S.; Ohno, K.; Tsujii, Y.; Fukuda, T. Controlled graft polymerization of methyl methacrylate on silicon substrate by the combined use of the langmuir− blodgett and atom transfer radical polymerization techniques. Macromolecules 1998, 31 (17), 5934-5936. (21) Dutta, A.; Misra, T.; Pal, A. A spectral study of aggregates of chrysene in an ethanol-water mixture and in Langmuir-Blodgett films. The Journal of Physical Chemistry 1994, 98 (16), 4365-4367. (22) Baoukina, S.; Monticelli, L.; Marrink, S. J.; Tieleman, D. P. Pressure− area isotherm of a lipid monolayer from molecular dynamics simulations. Langmuir 2007, 23 (25), 12617-12623. (23) With the growth of the surface pressure molecules reorganize because the area of the liquid subphase available in the Langmuir trough decreases. http://groups.ichf.edu.pl/kutner/research/view?id=25&name=Organized+ultrathin+films+of+organic+and+organic-inorganic+hybrid+materials+for+chemical+sensors. (24) Langmuir film, Langmuir-Blodgett deposition, Langmuir-Schaefer deposition and multilayers obtained after repeated deposition. https://www.biolinscientific.com/measurements/langmuir-and-langmuir-blodgett. (25) Kim, M. S.; Ma, L.; Choudhury, S.; Moganty, S. S.; Wei, S.; Archer, L. A. Fabricating multifunctional nanoparticle membranes by a fast layer-by-layer Langmuir–Blodgett process: Application in lithium–sulfur batteries. Journal of Materials Chemistry A 2016, 4 (38), 14709-14719. (26) Le Borgne, B.; De Sagazan, O.; Crand, S.; Jacques, E.; Harnois, M. Conformal electronics wrapped around daily life objects using an original method: water transfer printing. ACS applied materials & interfaces 2017, 9 (35), 29424-29429. (27) Luo, X.; Gelves, G. A.; Sundararaj, U.; Luo, J. L. Silver‐coated copper nanowires with improved anti‐oxidation property as conductive fillers in low‐density polyethylene. The Canadian Journal of Chemical Engineering 2013, 91 (4), 630-637. (28) Park, B. K.; Kim, D.; Jeong, S.; Moon, J.; Kim, J. S. Direct writing of copper conductive patterns by ink-jet printing. Thin solid films 2007, 515 (19), 7706-7711. (29) Choi, J.; Sauer, G.; Nielsch, K.; Wehrspohn, R. B.; Gösele, U. Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio. Chemistry of materials 2003, 15 (3), 776-779. (30) Gelves, G. A.; Lin, B.; Sundararaj, U.; Haber, J. A. Low electrical percolation threshold of silver and copper nanowires in polystyrene composites. Advanced Functional Materials 2006, 16 (18), 2423-2430. (31) Huang, C.-Y.; Lai, Y.-C.; Liao, Y.-C. Photo Curable Stretchable Conductors with Low Dynamic Resistance Variation. ACS Applied Electronic Materials 2019. (32) Wang, Y.; Zou, X.; Ren, W.; Wang, W.; Wang, E. Effect of silver nanoplates on Raman spectra of p-aminothiophenol assembled on smooth macroscopic gold and silver surface. The Journal of Physical Chemistry C 2007, 111 (8), 3259-3265. (33) El-Sayed, M. A. Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of chemical research 2001, 34 (4), 257-264. (34) Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chemical reviews 2005, 105 (4), 1025-1102. (35) Cao, Y. C.; Jin, R.; Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297 (5586), 1536-1540. (36) Kim, B.-H.; Lee, J.-S. One-pot photochemical synthesis of silver nanodisks using a conventional metal-halide lamp. Materials Chemistry and Physics 2015, 149, 678-685. (37) Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K.; Schatz, G. C.; Zheng, J. Photoinduced conversion of silver nanospheres to nanoprisms. science 2001, 294 (5548), 1901-1903. (38) Tian, X.; Wang, W.; Cao, G. A facile aqueous-phase route for the synthesis of silver nanoplates. Materials Letters 2007, 61 (1), 130-133. (39) Yi, Z.; Li, X.; Xu, X.; Luo, B.; Luo, J.; Wu, W.; Yi, Y.; Tang, Y. Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 392 (1), 131-136. (40) Marus, M.; Hubarevich, A.; Wang, H.; Smirnov, A.; Sun, X.; Fan, W. Optoelectronic performance optimization for transparent conductive layers based on randomly arranged silver nanorods. Optics express 2015, 23 (5), 6209-6214. (41) Li, S.-S.; Chang, C.-H.; Wang, Y.-C.; Lin, C.-W.; Wang, D.-Y.; Lin, J.-C.; Chen, C.-C.; Sheu, H.-S.; Chia, H.-C.; Wu, W.-R. Intermixing-seeded growth for high-performance planar heterojunction perovskite solar cells assisted by precursor-capped nanoparticles. Energy & Environmental Science 2016, 9 (4), 1282-1289. (42) Guo, F.; Azimi, H.; Hou, Y.; Przybilla, T.; Hu, M.; Bronnbauer, C.; Langner, S.; Spiecker, E.; Forberich, K.; Brabec, C. J. High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale 2015, 7 (5), 1642-1649. (43) Zhang, G.; Deng, C.; Shi, H.; Zou, B.; Li, Y.; Liu, T.; Wang, W. ZnO/Ag composite nanoflowers as substrates for surface-enhanced Raman scattering. Applied Surface Science 2017, 402, 154-160. (44) Li, Z.; Meng, G.; Liang, T.; Zhang, Z.; Zhu, X. Facile synthesis of large-scale Ag nanosheet-assembled films with sub-10 nm gaps as highly active and homogeneous SERS substrates. Applied Surface Science 2013, 264, 383-390. (45) Yang, B.; Liu, Z.; Guo, Z.; Zhang, W.; Wan, M.; Qin, X.; Zhong, H. In situ green synthesis of silver–graphene oxide nanocomposites by using tryptophan as a reducing and stabilizing agent and their application in SERS. Applied Surface Science 2014, 316, 22-27. (46) Huang, F.; Li, W.; Xiong, Q.; Li, X.; Yan, T.; Yu, W.; Zhang, H.; Liu, J. Preparation of flake silver powders with high diameter-to-thickness ratio. Guijinshu(Precious Metals) 2012, 33 (2), 30-35. (47) CHEN, S.; FANG, L.; SHI, C.; LU, H.-y.; ZHU, G.-p. Fabrication and Lasing of ZnO Micro-nano Disks. Jilin Normal University Journal (Natural Science Edition) 2015, (1), 6. (48) Yang, J.; Lu, L.; Wang, H.; Shi, W.; Zhang, H. Glycyl glycine templating synthesis of single-crystal silver nanoplates. Crystal growth & design 2006, 6 (9), 2155-2158. (49) Zhai, A.-x.; Cai, X.-h.; Bin, D. A novel wet-chemical method for preparation of silver flakes. Transactions of Nonferrous Metals Society of China 2014, 24 (5), 1452-1457. (50) HUANG, Y.; LIU, J.; WANG, H.-y. Gradient Changes of Vegetation Composition Along the Urban-Suburb Transection in Chongqing. Journal of Southwest University (Natural Science Edition) 2015, (1), 6. (51) Washio, I.; Xiong, Y.; Yin, Y.; Xia, Y. Reduction by the end groups of poly (vinyl pyrrolidone): a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Advanced Materials 2006, 18 (13), 1745-1749. (52) DUAN, J.-Y.; ZHANG, Q.-X.; WANG, Y.-L.; GUAN, J.-G. Facile Synthesis and Formation Mechanism of Silver Nanoplates with Edge Lengths of Several Micrometers. Acta Physico-Chimica Sinica 2009, 25 (7), 1405-1408. (53) Darmanin, T.; Nativo, P.; Gilliland, D.; Ceccone, G.; Pascual, C.; De Berardis, B.; Guittard, F.; Rossi, F. Microwave-assisted synthesis of silver nanoprisms/nanoplates using a “modified polyol process”. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 395, 145-151. (54) Lu, Q.; Lee, K.-J.; Lee, K.-B.; Kim, H.-T.; Lee, J.; Myung, N. V.; Choa, Y.-H. Investigation of shape controlled silver nanoplates by a solvothermal process. Journal of colloid and interface science 2010, 342 (1), 8-17. (55) Zhang, Q.; Hu, Y.; Guo, S.; Goebl, J.; Yin, Y. Seeded growth of uniform Ag nanoplates with high aspect ratio and widely tunable surface plasmon bands. Nano letters 2010, 10 (12), 5037-5042. (56) Graphical illustration of heat introduction and temperature distribution https://wiki.anton-paar.com/en/microwave-assisted-synthesis/. (57) Loo, Y.-L.; Willett, R. L.; Baldwin, K. W.; Rogers, J. A. Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics. Applied Physics Letters 2002, 81 (3), 562-564. (58) Gargas, D. J.; Muresan, O.; Sirbuly, D. J.; Buratto, S. K. Micropatterned Porous‐Silicon Bragg Mirrors by Dry‐Removal Soft Lithography. Advanced Materials 2006, 18 (23), 3164-3168. (59) Menard, E.; Lee, K.; Khang, D.-Y.; Nuzzo, R. G.; Rogers, J. A. A printable form of silicon for high performance thin film transistors on plastic substrates. Applied Physics Letters 2004, 84 (26), 5398-5400. (60) Saada, G.; Layani, M.; Chernevousky, A.; Magdassi, S. Hydroprinting Conductive Patterns onto 3D Structures. Advanced Materials Technologies 2017, 2 (5), 1600289. (61) Carlson, A.; Bowen, A. M.; Huang, Y.; Nuzzo, R. G.; Rogers, J. A. Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Advanced Materials 2012, 24 (39), 5284-5318. (62) Lee, Y.-I.; Kim, S.; Jung, S.-B.; Myung, N. V.; Choa, Y.-H. Enhanced electrical and mechanical properties of silver nanoplatelet-based conductive features direct printed on a flexible substrate. ACS applied materials & interfaces 2013, 5 (13), 5908-5913. (63) Yang, X.; He, W.; Wang, S.; Zhou, G.; Tang, Y.; Yang, J. Effect of the different shapes of silver particles in conductive ink on electrical performance and microstructure of the conductive tracks. Journal of Materials Science: Materials in Electronics 2012, 23 (11), 1980-1986. (64) Kim, F.; Cote, L. J.; Huang, J. Graphene oxide: surface activity and two‐dimensional assembly. Advanced Materials 2010, 22 (17), 1954-1958. (65) Chen, S.; Carroll, D. L. Synthesis and characterization of truncated triangular silver nanoplates. Nano letters 2002, 2 (9), 1003-1007. (66) Pienpinijtham, P.; Han, X. X.; Ekgasit, S.; Ozaki, Y. An ionic surfactant-mediated Langmuir–Blodgett method to construct gold nanoparticle films for surface-enhanced Raman scattering. Physical Chemistry Chemical Physics 2012, 14 (29), 10132-10139. (67) Vatanparast, H.; Shahabi, F.; Bahramian, A.; Javadi, A.; Miller, R. The role of electrostatic repulsion on increasing surface activity of anionic surfactants in the presence of hydrophilic silica nanoparticles. Scientific reports 2018, 8 (1), 7251.
|