|
1.Stafstrom, C.E. and L. Carmant, Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med, 2015. 5(6). 2.Moshe, S.L., et al., Epilepsy: new advances. Lancet, 2015. 385(9971): p. 884-98. 3.Kerr, M.P., The impact of epilepsy on patients' lives. Acta Neurol Scand Suppl, 2012(194): p. 1-9. 4.Thurman, D.J., et al., Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia, 2011. 52 Suppl 7: p. 2-26. 5.McCabe, P.H., New anti-epileptic drugs for the 21st century. Expert Opin Pharmacother, 2000. 1(4): p. 633-74. 6.Gupta, E., R. Kunjal, and J.D. Cury, Severe Hyponatremia Due to Valproic Acid Toxicity. J Clin Med Res, 2015. 7(9): p. 717-9. 7.Abdel-Dayem, M.A., et al., Valproate-induced liver injury: modulation by the omega-3 fatty acid DHA proposes a novel anticonvulsant regimen. Drugs R D, 2014. 14(2): p. 85-94. 8.Iivanainen, M. and H. Savolainen, Side effects of phenobarbital and phenytoin during long-term treatment of epilepsy. Acta Neurol Scand Suppl, 1983. 97: p. 49-67. 9.Reid, E.S., et al., Seizures Due to a KCNQ2 Mutation: Treatment with Vitamin B6. JIMD Rep, 2016. 27: p. 79-84. 10.Pendo, K. and C.M. DeGiorgio, Vitamin D3 for the Treatment of Epilepsy: Basic Mechanisms, Animal Models, and Clinical Trials. Front Neurol, 2016. 7: p. 218. 11.Nowell, M., et al., Advances in epilepsy surgery. J Neurol Neurosurg Psychiatry, 2014. 85(11): p. 1273-9. 12.Sills, G.J. and M.J. Brodie, Update on the mechanisms of action of antiepileptic drugs. Epileptic Disord, 2001. 3(4): p. 165-72. 13.Argikar, U.A. and R.P. Remmel, Effect of aging on glucuronidation of valproic acid in human liver microsomes and the role of UDP-glucuronosyltransferase UGT1A4, UGT1A8, and UGT1A10. Drug Metab Dispos, 2009. 37(1): p. 229-36. 14.Meunier, H., et al., [Pharmacodynamic properties of N-dipropylacetic acid]. Therapie, 1963. 18: p. 435-8. 15.Yaari, Y., M.E. Selzer, and J.H. Pincus, Phenytoin: mechanisms of its anticonvulsant action. Ann Neurol, 1986. 20(2): p. 171-84. 16.Cuttle, L., et al., Phenytoin metabolism by human cytochrome P450: involvement of P450 3A and 2C forms in secondary metabolism and drug-protein adduct formation. Drug Metab Dispos, 2000. 28(8): p. 945-50. 17.Mercado, J. and C. Czajkowski, Gamma-aminobutyric acid (GABA) and pentobarbital induce different conformational rearrangements in the GABA A receptor alpha1 and beta2 pre-M1 regions. J Biol Chem, 2008. 283(22): p. 15250-7. 18.Garnett, W.R., Lamotrigine: pharmacokinetics. J Child Neurol, 1997. 12 Suppl 1: p. S10-5. 19.Custer, K.L., et al., Synaptic vesicle protein 2 enhances release probability at quiescent synapses. J Neurosci, 2006. 26(4): p. 1303-13. 20.Doelken, M.T., et al., Alterations of intracerebral gamma-aminobutyric acid (GABA) levels by titration with levetiracetam in patients with focal epilepsies. Epilepsia, 2010. 51(8): p. 1477-82. 21.Patsalos, P.N., Clinical pharmacokinetics of levetiracetam. Clin Pharmacokinet, 2004. 43(11): p. 707-24. 22.Loscher, W., Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure, 2011. 20(5): p. 359-68. 23.Gupta, P., S.B. Khobragade, and V.M. Shingatgeri, Effect of Various Antiepileptic Drugs in Zebrafish PTZ-Seizure Model. Indian J Pharm Sci, 2014. 76(2): p. 157-63. 24.Lee, G.H., et al., Zebrafish larvae exposed to ginkgotoxin exhibit seizure-like behavior that is relieved by pyridoxal-5'-phosphate, GABA and anti-epileptic drugs. Dis Model Mech, 2012. 5(6): p. 785-95. 25.Baraban, S.C., et al., Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience, 2005. 131(3): p. 759-68. 26.Howe, K., et al., The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013. 496(7446): p. 498-503. 27.Kalueff, A.V., A.M. Stewart, and R. Gerlai, Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci, 2014. 35(2): p. 63-75. 28.Fontana, B.D., et al., The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Exp Neurol, 2018. 299(Pt A): p. 157-171. 29.Kodentsova, V.M., et al., [Vitamin-mineral supplements in nutrition of adults]. Vopr Pitan, 2015. 84(6): p. 141-50. 30.Duggan, S.N., et al., The prevalence of malnutrition and fat-soluble vitamin deficiencies in chronic pancreatitis. Nutr Clin Pract, 2014. 29(3): p. 348-54. 31.Cadario, F., et al., Administration of vitamin D and high dose of omega 3 to sustain remission of type 1 diabetes. Eur Rev Med Pharmacol Sci, 2018. 22(2): p. 512-515. 32.Matos, A., et al., The relationship between serum vitamin A and breast cancer staging before and after radiotherapy. Nutr Hosp, 2014. 29(1): p. 136-9. 33.McCarty, D.E., et al., The link between vitamin D metabolism and sleep medicine. Sleep Med Rev, 2014. 18(4): p. 311-9. 34.Elf, K., et al., Vitamin D deficiency in patients with primary immune-mediated peripheral neuropathies. J Neurol Sci, 2014. 345(1-2): p. 184-8. 35.Tamaddonfard, E., et al., Effects of safranal, a constituent of saffron, and vitamin E on nerve functions and histopathology following crush injury of sciatic nerve in rats. Phytomedicine, 2014. 21(5): p. 717-23. 36.Czeizel, A.E., et al., Folate deficiency and folic acid supplementation: the prevention of neural-tube defects and congenital heart defects. Nutrients, 2013. 5(11): p. 4760-75. 37.Christakos, S., et al., Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev, 2016. 96(1): p. 365-408. 38.Kalueff, A.V., A. Minasyan, and P. Tuohimaa, Anticonvulsant effects of 1,25-dihydroxyvitamin D in chemically induced seizures in mice. Brain Res Bull, 2005. 67(1-2): p. 156-60. 39.Borowicz, K.K., et al., Cholecalciferol enhances the anticonvulsant effect of conventional antiepileptic drugs in the mouse model of maximal electroshock. Eur J Pharmacol, 2007. 573(1-3): p. 111-5. 40.Borowicz, K.K., D. Morawska, and M. Morawska, Effect of cholecalciferol on the anticonvulsant action of some second generation antiepileptic drugs in the mouse model of maximal electroshock. Pharmacol Rep, 2015. 67(5): p. 875-80. 41.Burton, G.W., A. Joyce, and K.U. Ingold, Is vitamin E the only lipid-soluble, chain-breaking antioxidant in human blood plasma and erythrocyte membranes? Arch Biochem Biophys, 1983. 221(1): p. 281-90. 42.Wysota, B., et al., Severe but reversible neuropathy and encephalopathy due to vitamin E deficiency. Clin Neurol Neurosurg, 2017. 160: p. 19-20. 43.Oski, F.A. and L.A. Barness, Hemolytic anemia in vitamin E deficiency. Am J Clin Nutr, 1968. 21(1): p. 45-50. 44.Clarke, M.W., J.R. Burnett, and K.D. Croft, Vitamin E in human health and disease. Crit Rev Clin Lab Sci, 2008. 45(5): p. 417-50. 45.Mehvari, J., et al., Effects of Vitamin E on seizure frequency, electroencephalogram findings, and oxidative stress status of refractory epileptic patients. Adv Biomed Res, 2016. 5: p. 36. 46.Turunen, M., J. Olsson, and G. Dallner, Metabolism and function of coenzyme Q. Biochim Biophys Acta, 2004. 1660(1-2): p. 171-99. 47.Watts, G.F., et al., Coenzyme Q(10) improves endothelial dysfunction of the brachial artery in Type II diabetes mellitus. Diabetologia, 2002. 45(3): p. 420-6. 48.Zhang, Y., et al., Uptake of dietary coenzyme Q supplement is limited in rats. J Nutr, 1995. 125(3): p. 446-53. 49.Greenberg, J.A., et al., Folic Acid supplementation and pregnancy: more than just neural tube defect prevention. Rev Obstet Gynecol, 2011. 4(2): p. 52-9. 50.Herbert, V., Absorption of vitamin B12 and folic acid. Gastroenterology, 1968. 54(1): p. 110-5. 51.Blom, H.J. and Y. Smulders, Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J Inherit Metab Dis, 2011. 34(1): p. 75-81. 52.Hoffbrand, A.V. and D.G. Weir, The history of folic acid. Br J Haematol, 2001. 113(3): p. 579-89. 53.Leistner, E. and C. Drewke, Ginkgo biloba and ginkgotoxin. J Nat Prod, 2010. 73(1): p. 86-92. 54.Papp, A., O. Feher, and L. Erdelyi, The ionic mechanism of the pentylenetetrazol convulsions. Acta Biol Hung, 1987. 38(3-4): p. 349-61. 55.Squires, R.F., et al., Convulsant potencies of tetrazoles are highly correlated with actions on GABA/benzodiazepine/picrotoxin receptor complexes in brain. Life Sci, 1984. 35(14): p. 1439-44. 56.Martinc, B., I. Grabnar, and T. Vovk, The role of reactive species in epileptogenesis and influence of antiepileptic drug therapy on oxidative stress. Curr Neuropharmacol, 2012. 10(4): p. 328-43. 57.Terbach, N. and R.S. Williams, Structure-function studies for the panacea, valproic acid. Biochem Soc Trans, 2009. 37(Pt 5): p. 1126-32. 58.Dupuis, R.E., S.N. Lichtman, and G.M. Pollack, Acute valproic acid overdose. Clinical course and pharmacokinetic disposition of valproic acid and metabolites. Drug Saf, 1990. 5(1): p. 65-71. 59.Dalton, K. and M.J. Dalton, Characteristics of pyridoxine overdose neuropathy syndrome. Acta Neurol Scand, 1987. 76(1): p. 8-11. 60.Mintzer, S., C.T. Skidmore, and M.R. Sperling, B-vitamin deficiency in patients treated with antiepileptic drugs. Epilepsy Behav, 2012. 24(3): p. 341-4. 61.He, D.Y. and S.M. Dai, Anti-inflammatory and immunomodulatory effects of paeonia lactiflora pall., a traditional chinese herbal medicine. Front Pharmacol, 2011. 2: p. 10. 62.Ip, F.C., et al., Neuroprotective effect of a novel Chinese herbal decoction on cultured neurons and cerebral ischemic rats. BMC Complement Altern Med, 2016. 16(1): p. 437. 63.Wang, D., et al., Effects of paeoniflorin on neurobehavior, oxidative stress, brain insulin signaling, and synaptic alterations in intracerebroventricular streptozotocin-induced cognitive impairment in mice. Physiol Behav, 2018. 191: p. 12-20. 64.Chen, Y.F., et al., Paeoniflorin inhibits excitatory amino acid agonist-and high-dose morphine-induced nociceptive behavior in mice via modulation of N-methyl-D-aspartate receptors. BMC Complement Altern Med, 2016. 16: p. 240. 65.Vezzani, A., A. Friedman, and R.J. Dingledine, The role of inflammation in epileptogenesis. Neuropharmacology, 2013. 69: p. 16-24.
|