跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/18 23:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林坤賢
研究生(外文):Kun-Sian Lin
論文名稱:核心型抗彎間柱構件耐震行為試驗與分析
論文名稱(外文):Experimental and analytical investigation of the seismic behavior of cored moment resisting stub column dampers
指導教授:宋欣泰蕭博謙蕭博謙引用關係
指導教授(外文):Shin-Tai SongPo-Chien Hsiao
口試委員:陳垂欣林克強
口試委員(外文):Chui-Hsin ChenKer-Chun Lin
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:195
中文關鍵詞:抗彎間柱構件耐震評估複合材料後降伏勁度
外文關鍵詞:Moment Resisting Stub ColumnsSeismic Performance EvaluationComposite MaterialPost-Yield Stiffness
相關次數:
  • 被引用被引用:7
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
在實際工程案例中,間柱型式之消能元件(Stub Column Damper)已越來越常配置於抗彎矩構架(SMRF)系統,然而傳統的彎矩降伏型間柱(MRSC) 之後降伏勁度相當有限,且在腹板細長比較高的情況下產生塑鉸會導致嚴重的強度衰退,因此本研究為改善上述缺點,提出核心型抗彎間柱構件的設計,由核心部分之高強度鋼材及外側之低降伏鋼材組成,並具有翼板切削之設計,先前試驗結果顯示此設計能有效提高初始及降伏後勁度、降低局部挫屈發生後強度嚴重衰退的問題。本研究建立符合試體行為且具代表性之數值分析模型,此模型由先前之試驗結果驗證且能準確模擬其遲滯行為,利用此數值分析模型進行參數分析,以回歸方程式建立準確之強度及勁度估算公式。透過分析結果建立一套實際應用之斷面尺寸設計流程,並以此設計流程設計一系列之實尺寸試驗,驗證此消能構件於不同設計參數下之遲滯消能行為、耐震性能、可行性並以試驗結果驗證估算公式之準確性,試驗結果顯示核心之高強度鋼材於大變形下仍維持彈性,能有效改善局部挫屈後強度嚴重衰退的問題,並提供兩側低降伏鋼降伏後整體構件之穩定性,外側低降伏鋼翼板的切削設計能提高構件之累積塑性變形CPD及較多的能量消散,同時避免降伏區域過度集中於梁端,延後局部挫屈發生的時機。本研究結合上述之結果,利用非線性動力歷時分析方法對SDF系統進行耐震評估,探討核心型抗彎間柱構件之遲滯消能行為對整體構架系統耐震能力之影響,並透過靜態側推分析及非線性動力分析之結果進行討論,結果顯示配置間柱之SDF系統於各等級地震下有助於提升整體耐震性能,降低構架之受震變形反應。
The usage of stub column dampers (SD) have increasingly adopted in special moment-resisting frame (SMRF) system in constructing projects. However, typical moment resisting stub columns (MRSCs) usually give a limited post-yield stiffness, and severe strength degradation as using slender webs. To improve the drawbacks mentioned above, this study proposes an alternative of MRSC with a cored configuration which is referred to as cored MRSC. The design consists of a combination of one core segment and two side segment using different steel grades, and detailing of reduced column sections to achieve a hysteretic behavior having enhanced post-yield stiffness, improved ductility and postponed and mitigated the strength degradation. A general discrete model was developed in Opensees and validated by the experimental results. The numerical model enables to accurately capture the hysteretic behaviors of specimens. A parametric analytical study was performed using the developed numerical model mentioned above to establish the accurate regression equations of estimating the initial and post-yield stiffness of the cored MRSCs. The cored MRSCs design procedures was established and use to develop a experimental program. Several full-scale cored MRSCs specimens were designed and tested to verify the hysteretic behavior, seismic performance and feasibility with different design parameters. The experimental results shown that the presence of the core segment provide a stable cyclic behavior with very limited strength degradation, and the RCSs were verified to effectively shift plastic regions away from beam-column joints and postpone the occurrence of local buckling. A nonlinear time history analytical study was performed to evaluation the seismic performance and investigate the hysteretic behaviors of cored MRSCs which were installed in the Frame system.
摘要 i
Abstract ii
目錄 iv
表目錄 viii
圖目錄 x
照片目錄 xv
第一章 緒論 1
1.1研究動機與目的 1
1.2文獻回顧 2
1.2.1耐震間柱構架之相關研究 2
1.2.2後降伏勁度對結構受震反應影響之相關研究 4
1.2.3複合式材料之相關研究 4
1.3論文內容與架構 5
第二章 設計理念與分析 7
2.1力學原理與設計概念 7
2.1.1理論公式 8
2.2過去試驗結果 10
2.2.1試驗內容與方法 10
2.2.2試體介紹 11
2.2.3試驗結果 12
2.3數值分析模型建置 13
2.3.1 Opensees數值分析模型 13
2.3.2分析結果與試驗之比較 13
2.4參數分析研究 14
2.4.1參數決定 14
2.4.2估算公式 15
第三章 核心型抗彎間柱構件實尺寸試驗 18
3.1試體設計概念 18
3.1.1試體斷面尺寸設計流程步驟 18
3.1.2試體介紹 20
3.2試驗規劃 22
3.2.1試驗方法及內容 22
3.2.2試體製作與安裝 23
3.2.3試驗設備 24
3.2.3.1外力加載系統 24
3.2.3.2量測系統 24
3.2.4試驗程序 25
3.3試驗觀察 26
3.3.1試體R60L30 26
3.3.2試體R60L15 28
3.3.3試體NR60 30
3.3.4試體R60L30-N 31
3.3.5試體R50L30 32
第四章 試驗結果與討論 33
4.1各試體遲滯迴圈之比較及強度估算 33
4.2各試體側向位移分佈之比較 35
4.3各試體勁度之比較 36
4.4各試體之累積塑性變形(CPD) 37
4.5各試體之累積能量比較 37
4.6試驗行為模擬分析 38
4.6.1數值模型介紹 38
4.6.2分析結果與試驗結果比較討論 38
4.6.3各試體之彈性勁度與估算值比較 39
第五章 核心型抗彎間柱構件耐震行為研究與分析 41
5.1原型構架之設計說明 41
5.1.1原型構架設計參數計算 41
5.1.2設計地震力計算 43
5.1.3純抗彎矩構架系統各桿件斷面尺寸設計 45
5.1.4間柱構件之設計參數及配置方式 46
5.2靜態側推分析 46
5.2.1 Opensees數值分析模型 46
5.2.2側推曲線 47
5.3非線性動力歷時反應分析 48
5.3.1地震歷時之選擇 48
5.3.2歷時反應分析結果討論 49
5.3.2.1 間柱剪力之影響 49
5.3.2.2樓板加速度 50
5.3.2.3樓層剪力 50
5.3.2.4最大層間側位移角 51
5.3.2.5殘留層間側位移角 51
第六章 結論與建議 52
6.1結論 52
6.2建議 53
參考文獻 54
1.魏國忠 (1994), “偏心斜撐構架與耐震間柱構架之耐震實驗與行為研究”, 國立台灣大學土木工程研究所碩士論文
2.蔡克銓 (2002), “結構主動/被動控制耐震新技術之應用研究─子計畫:應用低降伏強度鋼板在結構減震消能器上之研究(I) ” , 行政院國家科學委員專題研究計畫成果報告, NSC 89-2625-Z-002-023
3.廖偉潔(2018), “複合式抗彎間柱於結構耐震性能提升之分析研究”, 國立中興大學土木工程研究所碩士論文
4.陳生金 (2000), “低降伏鋼剪力鋼板耐震行為探討”, 行政院國家科學委員專題研究計畫成果報告
5.Soltani, N., Abedi, K., Poursha, M. and Golabi, H. (2017),” An investigation of seismic parameters of low yield strength steel plate shear walls”, Earthquakes and Structures, An Int'l Journal, 12(6).
6.Nakashima, M. (1995), “Strain-hardening behavior of shear panels made of low-yield steel. I: Test”, Journal of Structural Engineering, 121(12): 1742-1749.
7.Ye, L.P., Lu, X.Z., Ma, Q.L., Cheng, G.Y., Song, S.Y., Miao, Z.W. and Pan P. (2008). “Study on the influence of post-yielding stiffness to the seismic response of building structures”, Proc., 14th World Conf. on Earthquake Engineering, China Earthquake Administration Ministry of Construction, Beijing.
8.Jones, S.L., Fry, G.T. and Engelhardt, M.D. (2002), ”Experimental evaluation of cyclically loaded reduced beam section moment connections”, Journal of Structural Engineering, 128(4): 441-451.
9.Uang, C.M. and Fan, C.C. (2001), ”Cyclic stability criteria for steel moment connections with reduced beam section”, Journal of Structural Engineering, 127(9): 1021-1027.
10.Chi, B. and Uang, C.M. (2002), “Cyclic response and design recommendations of reduced beam section moment connections with deep columns”, Journal of Structural Engineering, 128(4): 464-473.
11.Po-Chien Hsiao、Kazuhiro Hayashi、Hiroyuki Inamasu、Yun-Biao Luo (2015), “ Development and Testing of Naturally Buckling Steel Braces”, Journal of Structural Engineering Vol. 142, Issue 1
12.SEAOC blue book (1999), “Recommended Lateral Force Requirements and Commentary” ,Structural Engineering Association of California (SEAOC), 7th Edition, Sacramento, CA.
13.PEER-NGA (2014), “Pacific Earthquake Engineering Research Center (PEER) Ground Motion Database” ,Pacific Earthquake Engineering Research Center (PEER), University of California, Berkeley, CA. (http://ngawest2.berkeley.edu)
14.OpenSees-Command_Manual (http://opensees.berkeley.edu/wiki/index.php/Command_Manual)
15.AISC 360-10 (2010), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, Illinois, USA.
16.FEMA P695 (2009). “Quantification of building seismic performance factors,” Rep.FEMA P695, Federal Emergency Management Agency, Washington, D.C.
17.ATC 63 (2007), Recommended Methodology for Quantification of Building System Performance and Response Parameters - 75% Interim Draft Report, Applied Technology Council, Redwood City, CA.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊