跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昱安
研究生(外文):Yu-AnChen
論文名稱:低壓氣相溶液輔助多維度混成鈣鈦礦材料與光學特性
論文名稱(外文):Material and Optical characteristics multi-dimensional mixed perovskite by Low pressure Vapor-Assisted Solution Process
指導教授:陳昭宇陳昭宇引用關係
指導教授(外文):Chao-Yu Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:75
中文關鍵詞:二維三維混成鈣鈦礦低壓氣相輔助溶液製成多光子螢光
外文關鍵詞:2D/3D hybrid perovskiteLP-VASPKPFM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:82
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,二維鈣鈦礦 (2D perovskite) 引起了人們的廣泛關注,由於它們與三維鈣鈦礦 (3D perovskite) 相比具有更好的穩定性。本篇論文中,我們通過低壓氣相輔助溶液製程 (LP-VASP),藉由過度摻雜 PEAI (Phenethylammonium iodide) 來製作二維三維混成鈣鈦礦 (2D/3D hybrid perovskite),並通過多光子激發螢光掃描顯微鏡 (Multiphoton Excitation Microscope)、光致螢光掃描顯微鏡 (PL mapping)、表面電位掃描顯微鏡 (KPFM) 等儀器,對鈣鈦礦薄膜中的各種 n 值的鈣鈦礦進行空間分析。從穩態 PL 光譜中,鈣鈦礦薄膜表現出不同的特徵峰,對應於不同 n 值的二維鈣鈦礦,表示薄膜中擁有多種的二維鈣鈦礦。結果指出,過度參雜 PEA 鈣鈦礦薄膜具有不同的功函數,與多光子激發螢光掃描、PL mapping 一致。
In this study, we highly doped phenylethylammonium iodide (PEAI) to fabricate a 2D/3D hybrid perovskite. By using low-pressure vapor-assisted solution process (LP-VASP) method, the as-fabricated film exhibits multiple photoluminescence (PL) emission peaks corresponding to 2D perovskite with variant spacing as well as 3D perovskite. We conduct two-photon excitation microscopy and confocal microscopy to identify the spatial distribution of different n value perovskite in the resultant film.
摘要 III
Extended Abstract IV
致謝 XIII
1 第一章 緒論 1
1.1 前言........................................ 1
1.2 太陽能電池的演進................................ 1
1.3 現今太陽能電池................................. 2
1.3.1 第一世代太陽能電池 .......................... 2
1.3.2 第二世代太陽能電池 .......................... 2
1.3.3 第三世代太陽能電池 .......................... 3
1.4 鈣鈦礦太陽能電池................................ 5
1.5 研究動機..................................... 6
2 第二章
文獻回顧 7
2.1 有機無機混成鈣鈦礦發展............................ 7
2.2 氣相沉積鈣鈦礦................................. 12
2.2.1 共蒸鍍沉積法 .............................. 12
2.2.2 SequentialVacuumDeposition...................... 14
2.2.3 蒸氣輔助之溶液製成法 (Vapor-Assisted Solution Process, VASP) . . 15
2.2.4 化學氣相沉積法 (Chemical Vapor Deposition,CVD) . . . . . . . . . 16
2.2.5 低壓化學氣相沉積法 (Low pressure Hybrid Chemical Vapor Deposi-
tion) ................................... 16
2.2.6 低壓化學氣相沉積法 (Low pressure Hybrid Chemical Vapor Deposition) 18
2.3 鈣鈦礦材料.................................... 20
2.3.1 多元混成鈣鈦礦............................. 20
2.3.2 二維鈣鈦礦(2Dperovskite)....................... 23
2.4 非線性光學……………………….28
3 第三章 實驗方法以及分析儀器 31
3.1 實驗儀器與藥品…………..31
3.2 實驗流程 .....................32
3.3 鈣鈦礦材料製作 ………………..33
3.3.1 基板製備................................. 33
3.3.2 鈣鈦礦前驅溶液製備 .......................... 33
3.3.3 低壓氣相沉積鈣鈦礦 .......................... 34
3.4 薄膜製程工作原理................................ 34
3.4.1 真空加熱爐 ............................... 34
3.5 樣品分析..................................... 36
3.5.1 吸收光譜量測(UV-vis) ......................... 36
3.5.2 光致螢光光譜(Photoluminescene,PL) ................ 37
3.5.3 X光繞射分析儀(X-RayDiffraction,XRD) . . . . . . . . . . . . . 37
3.5.4 掃描式電子顯微鏡 (Scanning Electron Microscopic , SEM) . . . . . . 39
3.5.5 低掠角廣角 X 光散射分析儀 (Grazing-Incidence Wide-Angle X-ray
Scattering,GIWAXS) .......................... 40
3.5.6 多光子激發掃描式顯微鏡 (Multiphoton Excitation Microscope) . . . 41
3.5.7 光致螢光影像掃描(PLmapping) ................... 42
3.5.8 原子力顯微鏡(AtomicForceMicroscopy,AFM) . . . . . . . . . . 43
3.5.9 表面電位顯微鏡 ( Kelvin Probe Force Microscopy , KPFM ) . . . . . 44
4 第四章 結果與討論 46
4.1 2D-3Dperovskite................................. 46
4.2 不同PEAI濃度的前驅溶液........................... 48
4.2.1 不同PEAI濃度的前驅溶液:XRD圖譜 ............... 48
4.3 不同反應溫度的鈣鈦礦 ............................. 48
4.3.1 不同反應溫度的鈣鈦礦:螢光與吸收光譜 .............. 48
4.3.2 不同比例的前驅物在 125oC 溫度下的表現:XRD 圖譜 . . . . . . . 52
4.4 PEAI/PbI2=4的鈣鈦礦.............................. 53
4.4.1 PEAI/PbI2=4的鈣鈦礦:螢光與吸收光譜............... 54
4.4.2 PEAI/PbI2=4的鈣鈦礦:XRD圖譜&GIWAXS圖譜 . . . . . . . . 55
4.4.3 PEAI/PbI2=4鈣鈦礦的SEM影像圖.................. 57
4.5 光學特性分析 .................................. 59
4.5.1 非線性光學分析............................. 59
4.5.2 PLmapping................................ 63
4.6 表面形貌分析 .................................. 65
4.6.1 KPFM分析................................ 65
4.6.2 Adhesion分析 .............................. 67
5 第五章 結論與未來展望 68
6 REFERENCE 69
[1] A. Becquerel, “Mémoire sur les effets électriques produits sous l’influence des rayons solaires, Comptes Rendus de L’Academie des Seciences, vol. 9, pp. 561–567, 1839.
[2] C.Fritts,“Onanewformofseleniumphotocell,AdvancementofScience,vol.33,no.97, 1883.
[3] M. A. Green, “Photovoltaics: coming of age, IEEE Journal of Photovoltaics, 1990.
[4] W. Deng, D. Chen, Z. Xiong, P. J. Verlinden, J. Dong, F. Ye, H. Li, H. Zhu, M. Zhong, Y. Yang, Y. Chen, Z. Feng, and P. Altermatt, “20.8% solar cell on 156 mm x 156 mm p-type multicrystalline silicon substrate, IEEE Journal of Photovoltaics, vol. 6, no. 1, pp. 3–9, 2016.
[5] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yam- aguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell conversion efficiency with crystalline sili- con heterojunction solar cell, IEEE Journal of Photovoltaics, vol. 4, no. 6, pp. 1433–1435, 2014.
[6] T. Matsui, H. Sai, A. Bidiville, H.-J. Hsu, and K. Matsubara, “Progress and limitations of thin-film silicon solar cells, Solar Energy, vol. 170, pp. 486 – 498, 2018.
[7] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45), Progress in Photovoltaics: Research and Applications, vol. 23, no. 1, pp. 1–9, 2015.
[8] B.O’ReganandM.Grätzel,“Alow-cost,high-efficiencysolarcellbasedondye-sensitized colloidal tio2 films, Nature, vol. 353, no. 6346, pp. 737–740, 1991.
[9] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050–6051, 2009.
[10] H.-S. Kim, A. Hagfeldt, and N.-G. Park, “Morphological and compositional progress in halide perovskite solar cells, Chemical Communications, vol. 55, pp. 1192–1200, 2019.
[11] Y. Chen, L. Zhang, Y. Zhang, H. Gao, and H. Yan, “Large-area perovskite solar cells a review of recent progress and issues, RSC Advances, vol. 8, pp. 10489–10508, 2018.
[12] NREL, “https://www.nrel.gov/pv/cell-efficiency.html.
[13] I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, and H. I. Karunadasa, “A lay- ered hybrid perovskite solar-cell absorber with enhanced moisture stability, Angewandte Chemie, vol. 126, no. 42, pp. 11414–11417, 2014.
[14] D. B. Mitzi, Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials. John Wiley Sons, Ltd, 1999.
[15] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, vol. 3, no. 10, p. 4088, 2011.
[16] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with effi- ciency exceeding 9%, Scientific reports, vol. 2, pp. 591–591, 2012.
[17] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, vol. 499, no. 7458, pp. 316–319, 2013.
[18] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nature Materials, vol. 13, no. 9, pp. 897–903, 2014.
[19] M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, vol. 501, no. 7467, pp. 395–398, 2013.
[20] C.-W.Chen,H.-W.Kang,S.-Y.Hsiao,P.-F.Yang,K.-M.Chiang,andH.-W.Lin,“Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition, Advanced Materials, vol. 26, no. 38, pp. 6647–6652, 2014.
[21] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process, Journal of the American Chemical Society, vol. 136, no. 2, pp. 622–625, 2014.
[22] M. R. Leyden, L. K. Ono, S. R. Raga, Y. Kato, S. Wang, and Y. Qi, “High performance perovskite solar cells by hybrid chemical vapor deposition, J. Mater. Chem. A, vol. 2, no. 44, pp. 18742–18745, 2014.
[23] Y. Peng, G. Jing, and T. Cui, “A hybrid physical–chemical deposition process at ultra-low temperatures for high-performance perovskite solar cells, Journal of Materials Chemistry A, vol. 3, no. 23, pp. 12436–12442, 2015.
[24] M.-H.Li,H.-H.Yeh,Y.-H.Chiang,U.-S.Jeng,C.-J.Su,H.-W.Shiu,Y.-J.Hsu,N.Kosugi, T. Ohigashi, Y.-A. Chen, S. Po-Shen, P. Chen, and T.-F. Guo, “Highly efficient 2d/3d hybrid perovskite solar cells via low-pressure vapor-assisted solution process, Advanced Materials, vol. 30, no. 30, p. 1801401, 2018.
[25] N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M. K. Nazeeruddin, J. Maier, and M. Grätzel, “Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting, Angewandte Chemie International Edition, vol. 53, no. 12, pp. 3151–3157, 2014.
[26] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, and A. Hagfeldt, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environmental Science, vol. 9, no. 6, pp. 1989–1997, 2016.
[27] S. N. Ruddlesden and P. Popper, “The compound sr3ti2o7 and its structure, Acta Crystal- lographica, vol. 11, no. 1, pp. 54–55, 1958.
[28] S. N. Ruddlesden and P. Popper, “New compounds of the k2nif4 type, Acta Crystallo- graphica, vol. 10, no. 8, pp. 538–539, 1957.
[29] D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure, Nature, vol. 369, no. 6480, pp. 467– 469, 1994.
[30] L. N. Quan, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard, S. Hoogland, A. Buin, A. R. Kirmani, K. Zhao, A. Amassian, D. H. Kim, and E. H. Sargent, “Ligand-stabilized reduced-dimensionality perovskites, Journal of the American Chemical Society, vol. 138, no. 8, pp. 2649–2655, 2016.
[31]M.Yuan,L.N.Quan,R.Comin,G.Walters,R.Sabatini,O.Voznyy,S.Hoogland,Y.Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite en- ergy funnels for efficient light-emitting diodes, Nature Nanotechnology, vol. 11, pp. 872– 877, 2016.
[32] W. Peng, J. Yin, K.-T. Ho, O. Ouellette, M. De Bastiani, B. Murali, O. El Tall, C. Shen, X. Miao, J. Pan, and et al., “Ultralow self-doping in two-dimensional hybrid perovskite single crystals, Nano Letters, vol. 17, no. 8, pp. 4759–4767, 2017.
[33] A. Grzybowski and K. Pietrzak, “Maria goeppert-mayer (1906–1972): Two-photon effect on dermatology, Clinics in Dermatology, vol. 31, no. 2, pp. 221–225, 2013.
[34] N. V. TKACHENKO, Optical Spectroscopy Methods and Instrumentations. Elsevier Sci- ence, 2006.
[35] G. Walters, B. R. Sutherland, S. Hoogland, D. Shi, R. Comin, D. P. Sellan, O. M. Bakr, and E. H. Sargent, “Two-photon absorption in organometallic bromide perovskites, ACS Nano, vol. 9, no. 9, pp. 9340–9346, 2015.
[36] W. Liu, J. Xing, J. Zhao, X. Wen, K. Wang, P. Lu, and Q. Xiong, “Giant two-photon absorption and its saturation in 2d organic–inorganic perovskite, Advanced Optical Ma- terials, vol. 5, no. 7, p. 1601045, 2017.
[37] W. Kern, Thin Film Processes II 1st Edition. ELSEVIER, 1991.
[38] D. C. Harris and C. A. Lucy, Quantitative chemical analysis. W. H. Freeman and Com- pany, 2017.
[39] B.-T. Kot-Malgorzata, “In-operando hard x-ray photoelectron spectroscopy study on the resistive switching physics of hfo2-based rram, Journal of Applied Physics, vol. 115, p. 204509, 2014.
[40] B. W. Henry and B. W. Lawrence, “The reflection of x-rays by crystals, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 88, no. 605, pp. 428–438, 1913.
[41] R. H. Kretsinger, Principles of protein X-ray crystallography. Springer-Verlag, 1999.
[42] E. Frahm, Scanning Electron Microscopy (SEM). Springer Netherlands, 2017.
[43] J. Perlich, J. Rubeck, S. Botta, R. Gehrke, S. V. Roth, M. A. Ruderer, S. M. Prams, M. Ra- wolle, Q. Zhong, V. Körstgens, and P. Müller-Buschbaum, “Grazing incidence wide angle x-ray scattering at the wiggler beamline bw4 of hasylab, Review of Scientific Instruments, vol. 81, no. 10, p. 105105, 2010.
[44] D. J. Herman, J. E. Goldberger, S. Chao, D. T. Martin, and S. I. Stupp, “Orienting peri- odic organicinorganic nanoscale domains through one-step electrodeposition, ACS Nano, vol. 5, no. 1, pp. 565–573, 2011.
[45] K. Okamoto, K. Tateishi, K. Tamada, M. Funato, and Y. Kawakami, “Micro- photoluminescence mapping of surface plasmon-coupled emission from InGaN/GaN quantum wells, Japanese Journal of Applied Physics, vol. 58, 2019.
[46] G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope, Physical Review Let- ters, vol. 56, pp. 930–933, 1986.
[47] M. Linford, “Introduction to surface and material analysis and to various analytical tech- niques, Vacuum Technology Coating, pp. 27 – 33, 2014.
[48] L. Ferrari, J. Kaufmann, F. Winnefeld, and J. Plank, “Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorp- tion measurements, Journal of Colloid and Interface Science, vol. 347, no. 1, pp. 15 – 24, 2010.
[49] L. Gross, F. Mohn, N. Moll, P. Liljeroth, and G. Meyer, “The chemical structure of a molecule resolved by atomic force microscopy, Science, vol. 325, no. 5944, pp. 1110– 1114, 2009.
[50] W. Melitz, J. Shen, A. C. Kummel, and S. Lee, “Kelvin probe force microscopy and its application, Surface Science Reports, vol. 66, no. 1, pp. 1 – 27, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top