|
1.Hamasaki, M., et al., Autophagosomes form at ER–mitochondria contact sites. Nature, 2013. 495(7441): p. 389. 2.Weidberg, H., E. Shvets, and Z. Elazar, Biogenesis and cargo selectivity of autophagosomes. Annual review of biochemistry, 2011. 80: p. 125-156. 3.Stolz, A., A. Ernst, and I. Dikic, Cargo recognition and trafficking in selective autophagy. Nature cell biology, 2014. 16(6): p. 495. 4.Ravikumar, B., et al., Regulation of mammalian autophagy in physiology and pathophysiology. Physiological reviews, 2010. 90(4): p. 1383-1435. 5.Carlsson, S.R. and A. Simonsen, Membrane dynamics in autophagosome biogenesis. J Cell Sci, 2015. 128(2): p. 193-205. 6.Hayashi-Nishino, M., et al., A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nature cell biology, 2009. 11(12): p. 1433. 7.Graef, M., et al., ER exit sites are physical and functional core autophagosome biogenesis components. Molecular biology of the cell, 2013. 24(18): p. 2918-2931. 8.Nascimbeni, A.C., et al., ER-plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis. The EMBO journal., 2017. 36(14): p. 2018-2033. 9.Axe, E.L., et al., Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. Journal of Cell Biology, 2008. 182(4): p. 685-701. 10.Hailey, D.W., et al., Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 2010. 141(4): p. 656-667. 11.Chen, Y., M. Azad, and S. Gibson, Superoxide is the major reactive oxygen species regulating autophagy. Cell death and differentiation, 2009. 16(7): p. 1040. 12.Scherz‐Shouval, R., et al., Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. The EMBO journal, 2007. 26(7): p. 1749-1760. 13.Chen, Y., et al., Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. Journal of cell science, 2007. 120(23): p. 4155-4166. 14.Wang, W., et al., Superoxide flashes in single mitochondria. Cell, 2008. 134(2): p. 279-290. 15.Wang, Y., et al., ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy. Autophagy, 2012. 8(10): p. 1462-1476. 16.McCormack, J.G. and R.M. Denton, Mitochondrial Ca2+ transport and the role of intramitochondrial Ca2+ in the regulation of energy metabolism. Developmental neuroscience, 1993. 15(3-5): p. 165-173. 17.Tajeddine, N., How do reactive oxygen species and calcium trigger mitochondrial membrane permeabilisation? Biochimica et Biophysica Acta (BBA)-General Subjects, 2016. 1860(6): p. 1079-1088. 18.Das, A.M. and D.A. Harris, Control of mitochondrial ATP synthase in heart cells: inactive to active transitions caused by beating or positive inotropic agents. Cardiovascular research, 1990. 24(5): p. 411-417. 19.Korge, P., et al., Protective role of transient pore openings in calcium handling by cardiac mitochondria. Journal of Biological Chemistry, 2011. 286(40): p. 34851-34857. 20.Seidlmayer, L.K., et al., Distinct mPTP activation mechanisms in ischaemia–reperfusion: contributions of Ca2+, ROS, pH, and inorganic polyphosphate. Cardiovascular research, 2015. 106(2): p. 237-248. 21.Hansson, M.J., et al., Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. Free Radical Biology and Medicine, 2008. 45(3): p. 284-294. 22.Zorov, D.B., et al., Reactive oxygen species (Ros-Induced) Ros release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. Journal of experimental medicine, 2000. 192(7): p. 1001-1014. 23.Farber, J.L., The role of calcium ions in toxic cell injury. Environmental health perspectives, 1990. 84: p. 107-111. 24.劉珮柔, Triggering plasma membrane damage or melanosome damage by light, in 生化科學研究所. 2018, 臺灣大學. p. 1-72. 25.McNeil, P.L., Repairing a torn cell surface: make way, lysosomes to the rescue. Journal of cell science, 2002. 115(5): p. 873-879. 26.Cheng, X., et al., The intracellular Ca 2+ channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy. Nature medicine, 2014. 20(10): p. 1187. 27.Horn, A. and J.K. Jaiswal, Cellular mechanisms and signals that coordinate plasma membrane repair. Cellular and molecular life sciences, 2018. 75(20): p. 3751-3770. 28.Clapham, D.E., Calcium signaling. Cell, 2007. 131(6): p. 1047-1058. 29.Cheng, X., et al. Calcium signaling in membrane repair. in Seminars in cell & developmental biology. 2015. Elsevier. 30.McNeil, P.L. and T. Kirchhausen, An emergency response team for membrane repair. Nature reviews molecular cell biology, 2005. 6(6): p. 499. 31.Cai, C., et al., MG53 nucleates assembly of cell membrane repair machinery. Nature cell biology, 2009. 11(1): p. 56. 32.Ullery, J.C., et al., Activation of autophagy in response to nanosecond pulsed electric field exposure. Biochemical and biophysical research communications, 2015. 458(2): p. 411-417. 33.Gerstenmaier, L., et al., The autophagic machinery ensures nonlytic transmission of mycobacteria. Proceedings of the National Academy of Sciences, 2015. 112(7): p. E687-E692. 34.Dikalova, A.E., et al., Therapeutic targeting of mitochondrial superoxide in hypertension. Circulation research, 2010. 107(1): p. 106. 35.Halestrap, A.P. and A.M. Davidson, Inhibition of Ca2+-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochemical Journal, 1990. 268(1): p. 153-160. 36.Tanveer, A., et al., Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2+ and oxidant stress. European journal of biochemistry, 1996. 238(1): p. 166-172. 37.桑淳, 在飢餓狀況下由內質網到粒線體之鈣離子輸送引起細胞自噬爆發, in 生化科學研究所. 2018, 臺灣大學. p. 1-47. 38.Vevea, J.D., et al., Ratiometric biosensors that measure mitochondrial redox state and ATP in living yeast cells. JoVE (Journal of Visualized Experiments), 2013(77): p. e50633. 39.Xie, Z., U. Nair, and D.J. Klionsky, Atg8 controls phagophore expansion during autophagosome formation. Molecular biology of the cell, 2008. 19(8): p. 3290-3298. 40.Li, W., et al., Regulation of mitoflash biogenesis and signaling by mitochondrial dynamics. Scientific reports, 2016. 6: p. 32933. 41.Hou, T., et al., Synergistic triggering of superoxide flashes by mitochondrial Ca2+ uniport and basal reactive oxygen species elevation. Journal of Biological Chemistry, 2013. 288(7): p. 4602-4612. 42.Fukuda, N., T. Matsuda, and T. Nagai, Optical control of the Ca2+ concentration in a live specimen with a genetically encoded Ca2+-releasing molecular tool. ACS chemical biology, 2014. 9(5): p. 1197-1203. 43.Nicholls, D.G., Mitochondria and calcium signaling. Cell calcium, 2005. 38(3-4): p. 311-317.
|