跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/27 05:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:單可
研究生(外文):Ke Shan
論文名稱:粒線體鈣離子湧入導致之活性氧類釋放活化細胞自噬
論文名稱(外文):Mitochondrial ROS release triggered by calcium influx activates autophagy
指導教授:楊維元
口試委員:陳光超陳瑞華
口試日期:2019-06-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:49
中文關鍵詞:細胞自噬內質網與粒線體交界處活性氧類鈣離子飢餓細胞膜損壞Atg4
DOI:10.6342/NTU201901295
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細胞自噬為細胞吞食自身組成物的機制,其目的在於維持細胞正常功能與健康。細胞飢餓時,細胞自噬體主要形成於內質網與粒線體交界處。目前研究仍不清楚細胞如何即時在該處激發自噬體生成。因此,本篇研究著重於探討內質網與粒線體的鈣離子、活性氧類訊息傳導路徑如何在此處調控細胞自噬體生成。我們使用共軛焦顯微鏡觀察活細胞之細胞自噬活性,並在處理鈣離子、活性氧類抑制物後偵測細胞自噬活性的改變。我們發現細胞自噬活性在飢餓10-15分鐘時有顯著增加。另外,細胞自噬激發發生前,我們觀察到鈣離子湧入粒線體、粒線體活性氧類製造與釋放增加,而抑制這些現象導致細胞自噬激發消失。我們實驗室先前研究中發現同時期之 LC3去連結酶Atg4活性受抑制。此外,我們看到細胞膜損壞所引起之細胞自噬受粒線體活性氧類釋放調控。綜合以上結果,我們提出以下模式:短期飢餓時,鈣離子進入粒線體,引發粒線體製造並釋出活性氧類。釋出之活性氧類透過抑制該處Atg4以活化細胞自噬。此鈣離子活性氧類調控路徑為一普遍細胞自噬控制機制。此路徑不僅參與飢餓與細胞膜損壞引起的細胞自噬,也可能影響其他跟鈣離子擾動相關的細胞自噬活化。
Autophagy, a self-digestive mechanism, is vital for cellular functions and health. During starvation, autophagosomes form mainly at the endoplasmic reticulum (ER)-mitochondria contact sites. However, how cells timely induce autophagy at these sites are unclear. We aimed to elucidate the roles of ER and mitochondrial calcium-reactive oxygen species (ROS) signaling in autophagosome formation at these sites. We used confocal live-cell imaging to monitor autophagy activity in the absence or presence of calcium and ROS inhibitors. We found that autophagy activity burst at 10-15 minutes of starvation. The autophagy burst was preceded by mitochondrial calcium influx, mitochondrial ROS production and release; the inhibition of these phenomena abolished autophagy burst. Previously, our lab saw Atg4, an LC3 de-conjugating enzyme, was inhibited in the same time frame. Additionally, autophagy induced by plasma membrane damage was also controlled by mitochondrial ROS release. Taken together, we propose that during short-term starvation, mitochondrial calcium influx induces ROS production and release. ROS then facilitate autophagy by local Atg4 inhibition. This calcium-ROS signaling pathway may represent a general autophagy regulatory mechanism in starvation, plasma membrane damage and other autophagy stimuli that involve calcium perturbations.
中文摘要 i
ABSTRACT ii
CONTENTS iii
LIST OF FIGURES vi
Chapter 1 Introduction 1
1.1 Autophagy 2
1.2 Spatial regulation of autophagosome formation 2
1.2.1 ER in autophagosome formation 2
1.2.2 Mitochondria in autophagosome formation 3
1.2.3 ER-mitochondria contact sites in autophagosome formation 4
1.3 ROS and autophagosome formation 4
1.3.1 Autophagy activation by ROS 5
1.3.2 ROS signaling in autophagy regulation 7
1.4 Crosstalk between calcium and ROS 7
1.4.1 Calcium stimulation of mitochondrial ROS production 7
1.4.2 Calcium stimulation of mitochondrial ROS release 8
1.5 Autophagy, calcium and plasma membrane damage 9
1.5.1 Calcium increase and plasma membrane damage 9
1.5.2 Calcium and plasma membrane damage repair 10
1.5.3 Autophagy and plasma membrane damage 10
Chapter 2 Materials and methods 12
2.1 Cell culture 12
2.2 Transfection, Starvation and Confocal live-cell imaging 12
2.3 Monitoring autophagosome maturation events 13
2.4 MitoSOX assay 14
2.5 Western Blotting 15
2.6 Mitoflash and autophagosome formation 16
2.7 Mitochondrial calcium and ROS measurement after plasma membrane damage 16
2.8 Statistical analysis 17
Chapter 3 Results 18
3.1 Autophagy burst during short-term starvation mediated by calcium and ROS 18
3.1.1 Autophagy activity surges during short-term starvation 18
3.1.2 Mitochondrial ROS regulate autophagy burst 18
3.1.3 Mitochondrial calcium influx regulates ROS increase and release 19
3.1.4 Atg4 activity not regulated at protein expression levels 20
3.2 Mitoflash and autophagy regulation 20
3.2.1 Co-occurrence of calcium and mitoflash 20
3.2.2 Mitoflash and autophagosome maturation 21
3.3 Plasma membrane damage-induced autophagy mediated by calcium and ROS 21
3.3.1 Mitochondrial calcium increase upon plasma membrane damage 22
3.3.2 Mitochondrial ROS increase upon plasma membrane damage 22
3.3.3 Plasma membrane damage-induced autophagy controlled by
mitochondrial ROS release 23
Chapter 4 Discussion 24
Chapter 5 Figures 31
REFERENCE 44
1.Hamasaki, M., et al., Autophagosomes form at ER–mitochondria contact sites. Nature, 2013. 495(7441): p. 389.
2.Weidberg, H., E. Shvets, and Z. Elazar, Biogenesis and cargo selectivity of autophagosomes. Annual review of biochemistry, 2011. 80: p. 125-156.
3.Stolz, A., A. Ernst, and I. Dikic, Cargo recognition and trafficking in selective autophagy. Nature cell biology, 2014. 16(6): p. 495.
4.Ravikumar, B., et al., Regulation of mammalian autophagy in physiology and pathophysiology. Physiological reviews, 2010. 90(4): p. 1383-1435.
5.Carlsson, S.R. and A. Simonsen, Membrane dynamics in autophagosome biogenesis. J Cell Sci, 2015. 128(2): p. 193-205.
6.Hayashi-Nishino, M., et al., A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nature cell biology, 2009. 11(12): p. 1433.
7.Graef, M., et al., ER exit sites are physical and functional core autophagosome biogenesis components. Molecular biology of the cell, 2013. 24(18): p. 2918-2931.
8.Nascimbeni, A.C., et al., ER-plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis. The EMBO journal., 2017. 36(14): p. 2018-2033.
9.Axe, E.L., et al., Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. Journal of Cell Biology, 2008. 182(4): p. 685-701.
10.Hailey, D.W., et al., Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 2010. 141(4): p. 656-667.
11.Chen, Y., M. Azad, and S. Gibson, Superoxide is the major reactive oxygen species regulating autophagy. Cell death and differentiation, 2009. 16(7): p. 1040.
12.Scherz‐Shouval, R., et al., Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. The EMBO journal, 2007. 26(7): p. 1749-1760.
13.Chen, Y., et al., Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. Journal of cell science, 2007. 120(23): p. 4155-4166.
14.Wang, W., et al., Superoxide flashes in single mitochondria. Cell, 2008. 134(2): p. 279-290.
15.Wang, Y., et al., ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy. Autophagy, 2012. 8(10): p. 1462-1476.
16.McCormack, J.G. and R.M. Denton, Mitochondrial Ca2+ transport and the role of intramitochondrial Ca2+ in the regulation of energy metabolism. Developmental neuroscience, 1993. 15(3-5): p. 165-173.
17.Tajeddine, N., How do reactive oxygen species and calcium trigger mitochondrial membrane permeabilisation? Biochimica et Biophysica Acta (BBA)-General Subjects, 2016. 1860(6): p. 1079-1088.
18.Das, A.M. and D.A. Harris, Control of mitochondrial ATP synthase in heart cells: inactive to active transitions caused by beating or positive inotropic agents. Cardiovascular research, 1990. 24(5): p. 411-417.
19.Korge, P., et al., Protective role of transient pore openings in calcium handling by cardiac mitochondria. Journal of Biological Chemistry, 2011. 286(40): p. 34851-34857.
20.Seidlmayer, L.K., et al., Distinct mPTP activation mechanisms in ischaemia–reperfusion: contributions of Ca2+, ROS, pH, and inorganic polyphosphate. Cardiovascular research, 2015. 106(2): p. 237-248.
21.Hansson, M.J., et al., Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. Free Radical Biology and Medicine, 2008. 45(3): p. 284-294.
22.Zorov, D.B., et al., Reactive oxygen species (Ros-Induced) Ros release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. Journal of experimental medicine, 2000. 192(7): p. 1001-1014.
23.Farber, J.L., The role of calcium ions in toxic cell injury. Environmental health perspectives, 1990. 84: p. 107-111.
24.劉珮柔, Triggering plasma membrane damage or melanosome damage by light, in 生化科學研究所. 2018, 臺灣大學. p. 1-72.
25.McNeil, P.L., Repairing a torn cell surface: make way, lysosomes to the rescue. Journal of cell science, 2002. 115(5): p. 873-879.
26.Cheng, X., et al., The intracellular Ca 2+ channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy. Nature medicine, 2014. 20(10): p. 1187.
27.Horn, A. and J.K. Jaiswal, Cellular mechanisms and signals that coordinate plasma membrane repair. Cellular and molecular life sciences, 2018. 75(20): p. 3751-3770.
28.Clapham, D.E., Calcium signaling. Cell, 2007. 131(6): p. 1047-1058.
29.Cheng, X., et al. Calcium signaling in membrane repair. in Seminars in cell & developmental biology. 2015. Elsevier.
30.McNeil, P.L. and T. Kirchhausen, An emergency response team for membrane repair. Nature reviews molecular cell biology, 2005. 6(6): p. 499.
31.Cai, C., et al., MG53 nucleates assembly of cell membrane repair machinery. Nature cell biology, 2009. 11(1): p. 56.
32.Ullery, J.C., et al., Activation of autophagy in response to nanosecond pulsed electric field exposure. Biochemical and biophysical research communications, 2015. 458(2): p. 411-417.
33.Gerstenmaier, L., et al., The autophagic machinery ensures nonlytic transmission of mycobacteria. Proceedings of the National Academy of Sciences, 2015. 112(7): p. E687-E692.
34.Dikalova, A.E., et al., Therapeutic targeting of mitochondrial superoxide in hypertension. Circulation research, 2010. 107(1): p. 106.
35.Halestrap, A.P. and A.M. Davidson, Inhibition of Ca2+-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochemical Journal, 1990. 268(1): p. 153-160.
36.Tanveer, A., et al., Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2+ and oxidant stress. European journal of biochemistry, 1996. 238(1): p. 166-172.
37.桑淳, 在飢餓狀況下由內質網到粒線體之鈣離子輸送引起細胞自噬爆發, in 生化科學研究所. 2018, 臺灣大學. p. 1-47.
38.Vevea, J.D., et al., Ratiometric biosensors that measure mitochondrial redox state and ATP in living yeast cells. JoVE (Journal of Visualized Experiments), 2013(77): p. e50633.
39.Xie, Z., U. Nair, and D.J. Klionsky, Atg8 controls phagophore expansion during autophagosome formation. Molecular biology of the cell, 2008. 19(8): p. 3290-3298.
40.Li, W., et al., Regulation of mitoflash biogenesis and signaling by mitochondrial dynamics. Scientific reports, 2016. 6: p. 32933.
41.Hou, T., et al., Synergistic triggering of superoxide flashes by mitochondrial Ca2+ uniport and basal reactive oxygen species elevation. Journal of Biological Chemistry, 2013. 288(7): p. 4602-4612.
42.Fukuda, N., T. Matsuda, and T. Nagai, Optical control of the Ca2+ concentration in a live specimen with a genetically encoded Ca2+-releasing molecular tool. ACS chemical biology, 2014. 9(5): p. 1197-1203.
43.Nicholls, D.G., Mitochondria and calcium signaling. Cell calcium, 2005. 38(3-4): p. 311-317.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊