跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/03 12:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫偉庭
研究生(外文):Wei-Ting Sun
論文名稱:針對非線性大型系統之分散式適應模糊積分形式可變結構控制器設計
論文名稱(外文):DECENTRALIZED ADAPTIVE FUZZY INTEGRAL VARIABLE STRUCTURE CONTROL FOR ANONLINEAR LARGE-SCALE SYSTEM
指導教授:龔宗鈞
指導教授(外文):Chung-Chun Kung
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:50
中文關鍵詞:觀測器積分形式可變結構控制器大型系統適應模糊
外文關鍵詞:adaptive fuzzyintegral variable structure controllarge-scale systemstate observer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是探討分散式適應模糊積分形式可變結構控制器設計,此控制器是針對一個大型系統具有未知的非線性函數所設計。首先,利用模糊系統的特性來敘述大型系統內部的未知函數。再藉由狀態觀測器作為追蹤誤差向量。由於模糊系統與狀態觀測器,一個具有積分項的分散式可變結構控制器來確保追蹤效能。而所設計的適應法則會調節模糊系統的參數。根據Lyapunov穩定度定理,會證實大型系統的穩定度。此外,所設計的控制系統使全部的訊號達到理想追蹤效能和有界。最後,會以兩個例子來驗證本文所提出控制器對此系統的有效性。
This thesis investigates a decentralized adaptive fuzzy integral variable structure control law, and it is proposed for a class of unknown nonlinear large-scale system (LSS) that not all the states are available for measurement. First, the fuzzy models for describing the unknown function of the large-scale system. Next, by designing the state observer, it is used to be tracking error vector. Based on the fuzzy model and state observer, a decentralized integral variable structure control is developed for guaranteeing the tracking performance. Then, the adaptive laws for adjusting the parameters of the fuzzy models can be designed. The stability of the large-scale system can be verified by Lyapunov stability theorem. Moreover, the proposed overall control schemes guarantee that all the signals are bounded and achieve the desired tracking performance. Finally, two examples is given to illustrate the control synthesis and its effectiveness.
ACKNOWLEDGEMENTS
ABSTRACT (IN ENGLISH)
ABSTRACT (IN CHINESE)
TABLE OF CONTENTS
LIST OF FIGURES
CHAPTER
1 INTRODUCTION
2 SYSTEM DESCRIPTION
3 DESIGN OF DECENTRALIZED ADAPTIVE FUZZY INTEGRAL VARIABLE
STRUCTURE CONTROLLER
3.1 Design of Decentralized Integral Variable Structure Controller
3.2 Design of Fuzzy logic System
3.3 Decentralized Adaptive Fuzzy Integral Variable Structure
Control
4 SIMULATION RESULTS
5 CONCLUTIONS
REFERENCES
[1]J. Lunze, Feedback Control of Large-Scale Systems. Upper Saddle River, NJ: Prentice-Hall, 1992
[2]D. D. Siljak, Decentralized Control of Complex Systems. New York: Academic, 1991.
[3]B. D. O. Anderson and D. J. Clements, “Algebraic characterization of fixed modes in decentralized control,” Automatica, vol. 17, pp. 703-712, 1981.
[4]M. Ikeda and D. D. Siljak, “Decentralized stabilization of linear time-varying systems,” IEEE Trans. Automat. Contr., vol. AC-25, pp. 106-107, Feb. 1980.
[5]W. J. Wang, C. F. Cheng, and T. T. Lee, “Stabilization of large-scale systems with nonlinear perturbations via local feedback,” Int. J. Syst. Sci., vol. 20, pp.1003-1010, 1989.
[6]Y. H. Chen, G. Leitmann, and X. Z. Kai, “Robust control design for interconnected systems with time-varying uncertainties,” Int. J. Control, vol. 54, pp. 1119-1142, 1991.
[7]W. J. Wang and W. W. Lin “Decentralized PDC for large-scale T-S fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 13 no. 6, pp. 779-786, 2005.
[8]F. H. Hsiao, J. D. Hwang, C. W. Chen, and Z. R. Tsai, “Robust stabilization of nonlinear multiple time-delay large-scale systems via decentralized fuzzy control,” IEEE Trans. Fuzzy Syst., vol. 13, no. 1, pp. 152-163, 2005.
[9]F. H. Hsiao, C. W. Chen, Y. W. Liang, S. D. Xu, and W. L. Chiang, “T-S fuzzy controllers for nonlinear interconnected systems with multiple time delays,” IEEE Trans. Circuits Syst. I, vol. 52, no. 9, pp. 1883-1893, 2005.
[10]C. H. Lee and Y. C. Chang, “ tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 32-43, 1996.
[11]C. Y. Su and Y. Stepanenko, “Adaptive control of a class of nonlinear system with fuzzy logic,” IEEE Trans. Fuzzy Syst., vol. 2, no. 4, pp. 283-294, 1994.
[12]Y. C. Chang, “Robust tracking control for nonlinear MIMO systems via fuzzy approaches,” Automatica, vol. 36, pp. 1535-1545, 2000.
[13]S. C. Tong and T. Y. Chai, “Fuzzy indirect adaptive control for a class of decentralized nonlinear systems,” Int. J. Syst. Sci., vol. 29, pp. 15-149, 1998.
[14]V. D. Daniel and T. Yu, “Adaptive robust fuzzy control of nonlinear systems,” IEEE Trans. Syst. Man. Cybern., B, vol. 34, no. 1, pp. 1596-1601, 2004.
[15]S. Tong, H. X. Li, and G. Chen, “Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems,” IEEE Trans. Syst. Man. Cybern., B, vol 34, no. 1, pp. 770-775, 2004.
[16]C. C. Kung, and F. S. Chen, “Design of distance-based fuzzy sliding mode controller with adaptive fuzzy rule insertion,” in Proc. IFSA World Congress and 20th NAFIRS, British Columbia, CA, pp. 900-905, 2001.
[17]C. C. Kung, T. Y. Kao, and T. H. Chen,” Adaptive fuzzy sliding mode controller design,” in Proc. FUZZ-IEEE’02, Hawaii, U.S.A., pp. 674-679, 2002.
[18]C. C. Kung and T. H. Chen, and L. H. Kung, ”Modified adaptive fuzzy sliding mode controller for uncertain nonlinear systems,” IEICE Trans. Fundamentals, vol. E88-A, pp. 1328-1334, 2005.
[19]C. C. Kung and T. H. Chen, “Observer-based indirect adaptive fuzzy sliding mode control with state variable filters for unknown nonlinear dynamical systems,” Fuzzy Sets and Systems, vol. 155, pp. 292-308, 2005.
[20]K. K. Shyu, W. J. Liu, and K. C. Hsu, “Design of large-scale time-delayed systems with dead-zone input via variable structure control,” Automatica, vol. 41, pp. 1239-1246, 2005.
[21]K. K. Shyu, W. J. Liu, and K. C. Hsu, “Decentralized variable structure control of uncertain large-scale systems containing a dead zone,” IEE Proc. Control Theroy Appl., vol. 150, no. 5, pp. 467-475, 2003.
[22]C. W. Tao, M. L. Chan, and W. Y. Wang, “Robust control of the mismatched systems with the fuzzy integral sliding mode controller,” in Proc. IEEE SMC, PP. 3567-3662, 2003.
[23]C. P. Hung, “Integral variable structure control of nonlinear system using a CMAC neural network learning approach,” IEEE Trans. Syst., Man , and Cybern. B, vol. 34, no. 1, pp.702-709, 2004.
[24]Y. G. Leu, T. T. Lee, and W. Y. Wang, “Observer-based adaptive fuzzy-neural control for unknown nonlinear dynamical systems,” IEEE Trans. Syst., Man , and Cybern. B, vol. 29, no.5, 1999.
[25]S. Tong, H. X. Li, and W. Wang, “Observer-based adaptive fuzzy control for SISO nonlinear systems,” Fuzzy Sets and Systems, vol. 155, pp. 355-376, 2004.
[26]H. K. Khalil, Nonlinear Systems. Englewood Cliffs, NJ: Prentice Hall, 1992.
[27]L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Englewood Cliffs, NJ: Prentice Hall, 1994.
[28]J. T. Spooner and K. M. Passino, ”Decentralized adaptive control of nonlinear systems using radial basis neural network,” IEEE Trans. Automat. Contr., vol. 44, no. 11, pp. 2050-2057, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top