[1] A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode” Nature 238 (1972) 37-38.
[2] A. Kudo, H. Kato, I. Tsuji, “Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting”, Chem. Lett. 33(2004), 1534-1537.
[3]近藤英一,溫榮弘,黃郁珺, “微奈米加工學” 全華科技(2008)
[4] M.Grätzel, “Photoelectrochemical cells”, Nature 414(2001) 338-344.
[5]吳紀聖, “奈米光觸媒材料的合成與應用” 化工,第50卷,(2003) 61-68.[6] T. Yamamoto, H. Katayama-Yoshida, “Unipolarity of ZnO with a wide-band gap and its solution using codoping method” J. Cryst. Growth 214/215 (2000) 552-555.
[7] M. M. Bagheri-Mohagheghi, N. Shahtahmasebi, M.R. Alinejada, A. Youssefic, M. Shokooh-Saremi, “The effect of the post-annealing temperature on the nano-structure and energy band gap of SnO2 semiconducting oxide nano-particles synthesized by polymerizing complexing sol-gel method” Physica. B. 403 (2008) 2431-2437.
[8] Y. Nakano, K. Okawa, W. Nishijima, M. Okada, “Ozone decomposition of hazardous chemical substance in organic solvents” Water Res. 37 (2003) 2595-2598.
[9] J.Y. Feng, X.J. Hu, P.L. Yue, H.Y. Zhu, G.Q. Lu, “Degradation of azo-dye Orange II by photo assisted Fenton reaction using o novel composite of iron oxide and silicate nanoparticles as a catalyst” Ind. Eng. Chem. Res. 42 (2003) 2058-2066.
[10] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis” Chem. Rev. 95(1995) 69-96.
[11] N. Daneshvar, H. Ashassi-Sorkhabi, A. Tizpar, “Decolorization of Orange II
by electrocoagulation method” Sep. Purif. Technol. 31 (2003) 153-162.
[12] S.J. Zhang, H.Q. Yu, Y. Zhao, “Kinetic modeling of the radiolytic degradation of Acid Orange 7 in aqueous solutions” Water Res. 39 (2005) 839-846.
[13] I.I. Raffainer, P.R. von Rohr, Promoted wet oxidation of the azo dye orange II under mild conditions, Ind. Eng. Chem. Res. 40 (2001) 1083-1089.
[14] S. Chakrabarti, B. K. Dutta, “Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst” J. Hazard. Mater. B112 (2004) 269-278.
[15] A. Özcan, M. A. Oturanb, N. Oturanb, Y. Sahina, “Removal of Acid Orange 7 from water by electrochemically generated Fenton’s reagent” J. Hazard. Mater. 163 (2009) 1213-1220.
[16] L. G. Devi, S. G. Kumar, K. M. Reddy, C. Munikrishnappa, “Photo degradation of Methyl Orange an azo dye by Advanced Fenton Process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism” J. Hazard. Mater. 164 (2009) 459-467.
[17]施周,張文輝,馬振.基, “奈米環境技術” 五南圖書 (2006)
[18]張中太,張俊英, “無機光製發光材料及應用”化學工業出版社(2005)
[19] 洪世淇, “工觸媒應用產品將成為SARS病毒的剋星”化工資訊 06(2003) 40-44.
[20] 朱永法,宗瑞隆,姚文清, “材料分析化學” (2009) 389.
[21]Skata, T., “Heterogeneous photocatalysis in Liquid-Solid Interface. In Photocatalysis : fundamentals and applications” John Wiley &Sons, New York, (1989) 311-338.
[22] A. L. Linsebigler, G. Lu, J. T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results” Chem. Rev. 95(1995) 735-758.
[23] A. Henglein, “Small-Particle Research: Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles” Chsm. Rev. 89 (1989) 1861-1873.
[24] H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, R. P. H.Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films ” Appl. Phys. Lett. 73, (1998) 3656 -3660.
[25] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, “Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors” J. Photoch. Photobio. A 85 (1995) 247-255.
[26] R. Liua, Y. Huang, A. Xiaoa, H. Liua, “Preparation and photocatalytic property of mesoporous ZnO/SnO2 composite nanofibers” J. Alloy. Compd. 503 (2010) 103-110.
[27]M. Zhang, T. An, X. Hu, C. Wang, G. Sheng, J. Fu, “Preparation and photocatalytic properties of a nanometer ZnO-SnO2 coupled oxide” Appl. Catal. A: Gen. 260 (2004) 215-222.
[28] W. Cun, Z. Jincai, W. Xinming, M. Bixian, S. Guoying, P. Ping’an, F. Jiamo, Preparation, characterization and photocatalytic activityof nano-sized ZnO/SnO2 coupled photocatalysts” Appl. Catal. B: Environ. 39 (2002) 269-279.
[29]Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang, Y. Liu, “Electrospun Nanofibers of ZnO SnO2 Heterojunction with High Photocatalytic Activity” J. Phys. Chem. C 114 (2010) 7920-7925.
[30] Z. Yang , L. Lv , Y. Dai , Z. Xv , D. Qian, “Synthesis of ZnO-SnO2 composite oxides by CTAB-assisted co-precipitation and photocatalytic properties” Appl. Surf. Sci. 256 (2010) 2898-2902.
[31] C. Wanga, B. Xua, X. Wang, J. Zhaoc, “Preparation and photocatalytic activity of ZnO-TiO2-SnO2 mixture” J. Solid State Chem. 178 (2005) 3500-3506.
[32] C Wu, L. Shen, H. Yu, Q. Huang, Y. C. Zhang, “Synthesis of Sn-doped ZnO nanorods and their photocatalytic properties” Mater. Res. Bull. xxx (2011) xxx–xxx.
[33] J. Sun, S. Dong, J. Feng, X. Yin, X. Zhao, “Enhanced sunlight photocatalytic performance of Sn-doped ZnO for Methylene Blue degradation” J.Mol. CatalA- Chem. 335 (2011) 145-150.
[34] Z. Wang, Z. Li, H. Zhang, C. Wang, “Improved photocatalytic activity of mesoporous ZnO-SnO2 coupled nanofibers” Catal. Commun. 11 (2009) 257-260.
[35] R. Liua, Y. Huangc, A. Xiaoa, H. Liu, “Preparation and photocatalytic property of mesoporous ZnO/SnO2 composite nanofibers” J. Alloy. Compd. 503 (2010) 103-110.
[36] 蔣孝澈,陳光龍, “由鹽類溶液製作奈米氧化物之簡介” 化工 46 (1999) 67-76.[37] E.M. Seftel, E. Popovici, M. Mertens, E.A. Stefaniak, R. Van Grieken, P. Cool, E.F. Vansant, “SnIV-containing layered double hydroxides as precursors for nano-sized” Appl. Catal. B: Environ. 84 (2008) 699-705.
[38] S. Brunaller, P. H. Emmett, E. Teller, “Adsorption of Gases in Multimolecular Layers” J. Am. Chem. Soc. 60 (1938) 309-314.
[39] E. P. Barrett, L. G. Joyner, P. P. Halenda, “The Determination of Pore Volume and Area Distributions in Porous Substances” J. Am. Chem. Soc. 73 (1951) 373-380.
[40] C. Wanga, B. Xua, Xi. Wang, J. Zhao, “Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture” J.Solid State Chem. 178 (2005) 3500-3506.
[41] C. Y. Tsay, H. C. Cheng, Y. T. Tung, W. H. Tuan, C. K. Lin, “Effect on Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol-gel method” Thin Solid Films 517 (2008) 1032-1036.
[42]V. M. Jimenez, A. Caballero, A. Fernandez, J. P. Espinos, M. Ocana, A. R. Gonzalez-Elipe, “Structural characterization of partially amorphous SnO2 nanoparticles by factor analysis of XAS and FT-IR spectra” Solid State Ionics 116 (1999) 117-127.
[43] S. J. Jokela, M. D. McCluskey, K. G. Lynn, “Infrared spectroscopy of hydrogen in annealed zinc oxide” Physica. B. 340-342 (2003) 221-224.
[44] F. Liu, B. Quan, Z. Liu, L. Chen, “Surface characterization study on SnO2 powder modified by thiourea” Mater. Chem. Phys. 93 (2005) 301-304.
[45] J. H. Yu, G. M. “Electrical and CO gas sensing properties of ZnO–SnO2 composites” Sens. Actuators B 52 (1998) 251–256
[46] M.L. Zhang, T. An, X. Hu, C. Wang, G. Sheng, J.M. Fu, “Preparation and photocatalytic properties of a nanometer ZnO–SnO2 coupled oxide” Appl. Catal. A: Gen. 260(2004) 215-222.
[47] M.R. Sohrabi, M. Ghavami, “Comparison of Direct Yellow 12 dye degradation efficiency using UV/semiconductor and UV/H2O2/ semiconductor systems” Desalination 252 (2010) 157-162.
[48] N. Talebia, M.R. Nilforoushan, “Comparative study of the structural, optical and photocatalytic properties of semiconductor metal oxides toward degradation of methylene blue” Thin Solid Films 518 (2010) 2210-2215.
[49] W. Cun, Z. Jincai, W. Xinming, M. Bixian, S. Guoying, P. Ping’an, F. Jiamo, “Preparation, characterization and photocatalytic activityof nano-sized ZnO/SnO2 coupled photocatalysts” Appl. Catal. B: Environ. 39 (2002) 269-279.
[50] M. Zhang, T. An, X. Hu, C. Wang, G. Sheng, J. Fu, “Preparation and photocatalytic properties of a nanometer ZnO-SnO2 coupled oxide”,Applied Catalysis A: General 260 (2004) 215-222.
[51] A. L. Linsebigler, G. Lu, J. T. Yates, “Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results” Chem. Rev. 95 (1995) 735-758.