跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 21:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊靜如
研究生(外文):Ting-Ru Yang
論文名稱:氧化鋅基奈米粉體之光學特性研究
論文名稱(外文):The Study on The Optical Property of Zinc Oxide –Based Nanopowders
指導教授:蔡木村
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:80
中文關鍵詞:氧化鋅二氧化錫共析出法光觸媒AO7
外文關鍵詞:Zinc OxideTin OxideCo-precipitationPhotocatalystAO7
相關次數:
  • 被引用被引用:0
  • 點閱點閱:454
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用共析出法製備氧化鋅錫奈米顆粒,並探討不同的熱處理溫度、化學組成、摻雜金屬離子與染劑酸鹼值對光降解之影響。
  實驗結果顯示經熱處理300~900 oC可製得氧化鋅錫(ZnO:χSnO2; χ = 1~4莫耳比)奈米顆粒;由結構分析得知,隨熱處理溫度提升,其結晶性有變強趨勢。藉由控制鋅錫比對於能隙值及比表面積具有明顯影響;改變摻雜離子之摻雜濃度會增加粒徑大小,並增加團聚的現象 。
  光降解偶氮染料(AO7)之實驗結果顯示,於紫外光照射下在適當的溶液與成份條件,可有效促進光催化效率。於熱處理溫度提升至700 oC,其光觸媒活性亦有明顯提升。此外,氧化鋅錫粉體經照射0.5小時後,可達63%的AO7染料去除率,經摻雜金屬離子後染料去除率可以更加提升。綜合以上實驗結果顯示,影響降解效率的因素有:結晶性、比表面積大小、熱處理條件、摻雜金屬離子及染料溶液酸鹼值。


In this study, ZnO/SnO2 composite nanoparticles have been prepared via the co-precipitate method. The effects of various processing parameters such as heating temperature, chemical composition, dopant concentration on the photodegradation of dye have been investigated.
The experimental results showed that the nanoparticles of Zinc and Tin oxides(ZnO:χSnO2 ; χ = 1~4 molar ratio) was manufactured by heat-treatments at 300~900 oC. Structural analysis indicated that the crystallinity of oxides was improved with increasing heating temperature. The bandgap and specific surface area were significantly influenced by controlling the ratio of ZnO/SnO2. The size of nanoparticles and the state of powder aggregation were increased slightly with the increase in the amount of dopant,.
Photodegradation of AO7 (Acid Orange 7) showed that the optimum photodecolorization of dyes were obtained under proper solution and composition conditions by UV irradiation. When the heat-treatment temperature was increased to 700 oC, the photocatalytic activity improved significantly. In addition, the degradation rate reached to 63% under UV-light irradiation for 0.5 hr. After doping different ions, the degradation rate could be more improved at once. The photocatalyst activity was dependent upon specific surface area, heat-treatment temperature, amount of dopant and pH values.

中文摘要i
英文摘要ii
誌謝 iii
目錄 iv
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 氧化鋅/二氧化錫之功能應用 3
1.3.1 光觸媒應用 3
1.3.2 氧化鋅之應用 3
1.3.3 氧化錫之應用 4
1.3.4 光學特性 4
1.4 陶瓷粉末製備方法 5
1.4.1 物理方法 5
1.4.1.1濺鍍法 5
1.4.1.2 蒸鍍法 5
1.4.2 化學方法 5
1.4.2.1 微乳液法 5
1.4.2.2 水熱法 5
1.4.2.3 熱噴霧法 6
1.4.2.4溶膠-凝膠法(sol-gel method) 6
1.4.2.5 水溶液法 6
第二章 基礎理論及文獻回顧 8
2.1 氧化鋅/氧化錫(ZnO/SnO2)簡介 8
2.1.1 基本物性及晶體結構 8
2.1.2 相關應用及原理 10
2.1.2.1偶氮染料 10
2.1.2.2 染料特性介紹 12
2.1.2.3 光觸媒之光催化反應 14
2.1.2.4 影響光觸媒催化效率之因素 15
2.1.2.5 複合半導體光觸媒 17
2.1.2.6 光催化降解原理 17
2.2 共析出法 23
2.2.1 共析出法簡介 23
2.3 研究目的 25
第三章 實驗方法與步驟 26
3.1 實驗概述 26
3.1.1 製備光觸媒粉末 26
3.2 材料特性分析及儀器原理簡介 28
3.2.1 光催化反應分析 28
3.2.1.1 色度分析 28
3.2.1.2 光催化反應分析 28
3.2.2 結構分析 29
3.2.2.1 X-光繞射儀 (XRD) 29
3.2.2.2 傅立葉轉換紅外線光譜儀 (FT-IR) 29
3.2.2.3 場發射掃描式電子顯微鏡(FE-SEM) 29
3.2.3 物性分析 29
3.2.3.1 恆溫吸附儀 (BET) 29
3.2.4熱重分析儀/熱示差掃描分析儀 30
3.2.5光學特性分析 30
3.2.5.1 紫外光/可見光/近紅外光光譜儀 (UV-vis-NIR) 30
第四章 結果與討論 31
4.1 氧化鋅基添加無機錫鹽類製備光觸媒粉體 31
4.1.1 共析出之光觸媒粉體試片條件 31
4.1.2 結構分析 31
4.1.3 質差與熱差分析儀(TG/DSC) 41
4.1.4 微結構分析 47
4.1.6 光學特性 55
4.1.6 光催化分析 58
第五章 結論 68
參考文獻 69
英文論文大綱 75
簡歷 80



[1] A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode” Nature 238 (1972) 37-38.
[2] A. Kudo, H. Kato, I. Tsuji, “Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting”, Chem. Lett. 33(2004), 1534-1537.
[3]近藤英一,溫榮弘,黃郁珺, “微奈米加工學” 全華科技(2008)
[4] M.Grätzel, “Photoelectrochemical cells”, Nature 414(2001) 338-344.
[5]吳紀聖, “奈米光觸媒材料的合成與應用” 化工,第50卷,(2003) 61-68.
[6] T. Yamamoto, H. Katayama-Yoshida, “Unipolarity of ZnO with a wide-band gap and its solution using codoping method” J. Cryst. Growth 214/215 (2000) 552-555.
[7] M. M. Bagheri-Mohagheghi, N. Shahtahmasebi, M.R. Alinejada, A. Youssefic, M. Shokooh-Saremi, “The effect of the post-annealing temperature on the nano-structure and energy band gap of SnO2 semiconducting oxide nano-particles synthesized by polymerizing complexing sol-gel method” Physica. B. 403 (2008) 2431-2437.
[8] Y. Nakano, K. Okawa, W. Nishijima, M. Okada, “Ozone decomposition of hazardous chemical substance in organic solvents” Water Res. 37 (2003) 2595-2598.
[9] J.Y. Feng, X.J. Hu, P.L. Yue, H.Y. Zhu, G.Q. Lu, “Degradation of azo-dye Orange II by photo assisted Fenton reaction using o novel composite of iron oxide and silicate nanoparticles as a catalyst” Ind. Eng. Chem. Res. 42 (2003) 2058-2066.
[10] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis” Chem. Rev. 95(1995) 69-96.
[11] N. Daneshvar, H. Ashassi-Sorkhabi, A. Tizpar, “Decolorization of Orange II
by electrocoagulation method” Sep. Purif. Technol. 31 (2003) 153-162.
[12] S.J. Zhang, H.Q. Yu, Y. Zhao, “Kinetic modeling of the radiolytic degradation of Acid Orange 7 in aqueous solutions” Water Res. 39 (2005) 839-846.
[13] I.I. Raffainer, P.R. von Rohr, Promoted wet oxidation of the azo dye orange II under mild conditions, Ind. Eng. Chem. Res. 40 (2001) 1083-1089.
[14] S. Chakrabarti, B. K. Dutta, “Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst” J. Hazard. Mater. B112 (2004) 269-278.
[15] A. Özcan, M. A. Oturanb, N. Oturanb, Y. Sahina, “Removal of Acid Orange 7 from water by electrochemically generated Fenton’s reagent” J. Hazard. Mater. 163 (2009) 1213-1220.
[16] L. G. Devi, S. G. Kumar, K. M. Reddy, C. Munikrishnappa, “Photo degradation of Methyl Orange an azo dye by Advanced Fenton Process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism” J. Hazard. Mater. 164 (2009) 459-467.
[17]施周,張文輝,馬振.基, “奈米環境技術” 五南圖書 (2006)
[18]張中太,張俊英, “無機光製發光材料及應用”化學工業出版社(2005)
[19] 洪世淇, “工觸媒應用產品將成為SARS病毒的剋星”化工資訊 06
(2003) 40-44.
[20] 朱永法,宗瑞隆,姚文清, “材料分析化學” (2009) 389.
[21]Skata, T., “Heterogeneous photocatalysis in Liquid-Solid Interface. In Photocatalysis : fundamentals and applications” John Wiley &Sons, New York, (1989) 311-338.
[22] A. L. Linsebigler, G. Lu, J. T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results” Chem. Rev. 95(1995) 735-758.
[23] A. Henglein, “Small-Particle Research: Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles” Chsm. Rev. 89 (1989) 1861-1873.
[24] H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, R. P. H.Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films ” Appl. Phys. Lett. 73, (1998) 3656 -3660.
[25] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, “Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors” J. Photoch. Photobio. A 85 (1995) 247-255.
[26] R. Liua, Y. Huang, A. Xiaoa, H. Liua, “Preparation and photocatalytic property of mesoporous ZnO/SnO2 composite nanofibers” J. Alloy. Compd. 503 (2010) 103-110.
[27]M. Zhang, T. An, X. Hu, C. Wang, G. Sheng, J. Fu, “Preparation and photocatalytic properties of a nanometer ZnO-SnO2 coupled oxide” Appl. Catal. A: Gen. 260 (2004) 215-222.
[28] W. Cun, Z. Jincai, W. Xinming, M. Bixian, S. Guoying, P. Ping’an, F. Jiamo, Preparation, characterization and photocatalytic activityof nano-sized ZnO/SnO2 coupled photocatalysts” Appl. Catal. B: Environ. 39 (2002) 269-279.
[29]Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang, Y. Liu, “Electrospun Nanofibers of ZnO SnO2 Heterojunction with High Photocatalytic Activity” J. Phys. Chem. C 114 (2010) 7920-7925.
[30] Z. Yang , L. Lv , Y. Dai , Z. Xv , D. Qian, “Synthesis of ZnO-SnO2 composite oxides by CTAB-assisted co-precipitation and photocatalytic properties” Appl. Surf. Sci. 256 (2010) 2898-2902.
[31] C. Wanga, B. Xua, X. Wang, J. Zhaoc, “Preparation and photocatalytic activity of ZnO-TiO2-SnO2 mixture” J. Solid State Chem. 178 (2005) 3500-3506.
[32] C Wu, L. Shen, H. Yu, Q. Huang, Y. C. Zhang, “Synthesis of Sn-doped ZnO nanorods and their photocatalytic properties” Mater. Res. Bull. xxx (2011) xxx–xxx.
[33] J. Sun, S. Dong, J. Feng, X. Yin, X. Zhao, “Enhanced sunlight photocatalytic performance of Sn-doped ZnO for Methylene Blue degradation” J.Mol. CatalA- Chem. 335 (2011) 145-150.
[34] Z. Wang, Z. Li, H. Zhang, C. Wang, “Improved photocatalytic activity of mesoporous ZnO-SnO2 coupled nanofibers” Catal. Commun. 11 (2009) 257-260.
[35] R. Liua, Y. Huangc, A. Xiaoa, H. Liu, “Preparation and photocatalytic property of mesoporous ZnO/SnO2 composite nanofibers” J. Alloy. Compd. 503 (2010) 103-110.
[36] 蔣孝澈,陳光龍, “由鹽類溶液製作奈米氧化物之簡介” 化工 46 (1999) 67-76.
[37] E.M. Seftel, E. Popovici, M. Mertens, E.A. Stefaniak, R. Van Grieken, P. Cool, E.F. Vansant, “SnIV-containing layered double hydroxides as precursors for nano-sized” Appl. Catal. B: Environ. 84 (2008) 699-705.
[38] S. Brunaller, P. H. Emmett, E. Teller, “Adsorption of Gases in Multimolecular Layers” J. Am. Chem. Soc. 60 (1938) 309-314.
[39] E. P. Barrett, L. G. Joyner, P. P. Halenda, “The Determination of Pore Volume and Area Distributions in Porous Substances” J. Am. Chem. Soc. 73 (1951) 373-380.
[40] C. Wanga, B. Xua, Xi. Wang, J. Zhao, “Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture” J.Solid State Chem. 178 (2005) 3500-3506.
[41] C. Y. Tsay, H. C. Cheng, Y. T. Tung, W. H. Tuan, C. K. Lin, “Effect on Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol-gel method” Thin Solid Films 517 (2008) 1032-1036.
[42]V. M. Jimenez, A. Caballero, A. Fernandez, J. P. Espinos, M. Ocana, A. R. Gonzalez-Elipe, “Structural characterization of partially amorphous SnO2 nanoparticles by factor analysis of XAS and FT-IR spectra” Solid State Ionics 116 (1999) 117-127.
[43] S. J. Jokela, M. D. McCluskey, K. G. Lynn, “Infrared spectroscopy of hydrogen in annealed zinc oxide” Physica. B. 340-342 (2003) 221-224.
[44] F. Liu, B. Quan, Z. Liu, L. Chen, “Surface characterization study on SnO2 powder modified by thiourea” Mater. Chem. Phys. 93 (2005) 301-304.
[45] J. H. Yu, G. M. “Electrical and CO gas sensing properties of ZnO–SnO2 composites” Sens. Actuators B 52 (1998) 251–256
[46] M.L. Zhang, T. An, X. Hu, C. Wang, G. Sheng, J.M. Fu, “Preparation and photocatalytic properties of a nanometer ZnO–SnO2 coupled oxide” Appl. Catal. A: Gen. 260(2004) 215-222.
[47] M.R. Sohrabi, M. Ghavami, “Comparison of Direct Yellow 12 dye degradation efficiency using UV/semiconductor and UV/H2O2/ semiconductor systems” Desalination 252 (2010) 157-162.
[48] N. Talebia, M.R. Nilforoushan, “Comparative study of the structural, optical and photocatalytic properties of semiconductor metal oxides toward degradation of methylene blue” Thin Solid Films 518 (2010) 2210-2215.
[49] W. Cun, Z. Jincai, W. Xinming, M. Bixian, S. Guoying, P. Ping’an, F. Jiamo, “Preparation, characterization and photocatalytic activityof nano-sized ZnO/SnO2 coupled photocatalysts” Appl. Catal. B: Environ. 39 (2002) 269-279.
[50] M. Zhang, T. An, X. Hu, C. Wang, G. Sheng, J. Fu, “Preparation and photocatalytic properties of a nanometer ZnO-SnO2 coupled oxide”,Applied Catalysis A: General 260 (2004) 215-222.
[51] A. L. Linsebigler, G. Lu, J. T. Yates, “Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results” Chem. Rev. 95 (1995) 735-758.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top