跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/19 07:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:歐可翊
研究生(外文):Ou,Ko-Yi
論文名稱:以本體論為基礎的情境感知推薦應用: 以服飾商家推薦為例
論文名稱(外文):PopFun: A context-aware and ontology-based mobile recommender system for personalized recommendation
指導教授:王謙王謙引用關係
指導教授(外文):Wang,Chian
口試委員:王謙楊婉秀王凱
口試委員(外文):Wang,ChianYang,Wan-ShiouWang,Kai
口試日期:2016-07-21
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:資訊管理學系數位內容科技與管理碩士班
學門:電算機學門
學類:電算機應用學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:78
中文關鍵詞:行動裝置推薦系統情境感知本體論
外文關鍵詞:mobile devicesrecommendation systemcontext-awareontology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:362
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著網際網路與行動商務越來越成熟的發展,行動裝置越來越普及化,人們可以隨時利用電腦或是行動裝置來購買商品,有此看出行動商務已改變了現今人們的購物體驗。目前行動裝置的日益發展與普及下,如果在行動裝置上導入一套能夠依照使用者目前所在地點的商家推薦系統,不但可以方便快速的取得商家的資訊,也可以快速的找尋到自己想要的商品,並可以進一步的找到自己有興趣的商家。本研究將運用本體論導入在情境感知的商家推薦系統上,並探討其是否可以解決使用者在逛街時對於商家選擇上的問題。
結果顯示本系統在系統品質、資訊品質與服務品質這些方面上都有不錯的表現並且被使用者接受;在系統效益方面,推薦系統的設計確實為使用者降低了使用者在逛街時對於商家選擇的問題,為使用者帶來更加便利的逛街體驗;最後使用者對於本系統也是相當滿意的,使用者同意在未來將繼續使用本系統來查詢商家的相關資訊,並且也有將本研究所設計之具有實用性的商家推薦系統分享給親朋好友一起使用的意願。

Currently under development and the growing popularity of mobile devices and the Location Based Service is more popularity issue. If imported a context-aware recommendation system on mobile device which capable of accordance with the user's current location, not only can quickly and easily get your store information, you can quickly find what you want to goods.
The context-aware recommendation system is introduces ontology technologies to analyze the relations between the user and the store and the information about the store. The context-aware recommendation system can provide tailored, personalized results for the user in real-time. Finally the evaluation results show the context-aware recommendation system can provide high user satisfaction, and it is capable to solve the problems that users when they are looking for appropriate store to shopping.

中文摘要 i
英文摘要 ii
誌 謝 iii
目 錄 iv
圖索引 v
表索引 vi
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 4
第二章 文獻探討 7
第一節 推薦系統(Recommender Systems) 7
第二節 情境感知(Context-awareness) 12
第三節 本體論(Ontology) 16
第三章 系統架構 21
第一節 本體論建置 24
第二節 前端使用者 30
第三節 後端伺服器 32
第四章 系統實作 41
第一節APP設計發想 42
第二節APP開發過程與介面設計 43
第三節APP使用情境範例 50
第五章 系統評估 52
第一節 評估方法與實驗設計 52
第二節 評估結果 53
第六章 結論 63
第一節 結論 63
第二節 後續研究建議 64
參考文獻 66
附錄一 74

張慧銖(民91)。線上公用目錄的發展趨勢。

鄒昌達(民93)。入口網站會員採用個人化服務之探索性研究-以Yahoo!為例。

謝郁盈(民94)。建構時效性商品促銷行動商務系統,高雄第一科技大學研討會。

歐仁德(民95)。結合本體論與通用個人輪廓於個人化推薦之研究

陳冠廷(民104)。應用本體論於情境感知之推薦系統:以美食推薦為例。

陳瑞霖(民103年8月20日)。台灣網路資訊中心調查顯示,行為上網大幅增加。科技新報。民105年1月20日,取自:http://technews.tw/2014/08/20/twnic-online-behavior-survay-more-mobile-sulfing/

洪聖壹(民105年1月28日)。Facebook 2015 全年收入近 180 億!用戶數近 16 億。東森新聞雲。民105年4月25日,取自:http://www.ettoday.net/news/20160128/639176.htm#ixzz4CZcYV4oK

關於Amazon推薦清單的祕密。INSIDE。民105年3月15日,取自:http://www.inside.com.tw/2012/08/06/amazons-recommendation-secret

Alberts,L.K.YMIR.(1993).An ontology for engineering design, Ph.D. Thesis, University of Twente.

ASHRAE, (1997).Thermal Comfort, ASHRAE handbook Fundamental, ASHRAE

Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. (1999, January). Towards a better understanding of context and context-awareness. In Handheld and ubiquitous computing (pp. 304-307). Springer Berlin Heidelberg.

Ardissono, L., Goy, A., Petrone, G., Segnan, M., & Torasso, P. (2003). Intrigue:personalized recommendation of tourist attractions for desktop and hand held devices. Applied Artificial Intelligence, 17(8-9), 687-714.

Adomavicius, G., & Tuzhilin, A. (2005).Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. Knowledge and Data Engineering, IEEE Transactions on, 17(6), 734-749.

Belkin, Nicholas. J. and W. Bruce Croft, (1992). Information Filtering and nformation Retrieval: Two Sides of the Same Coin?, ommunications of he ACM, Vol. 35, No. 12, pp. 29-38.

B. Schilit, and M. Theimer, (1994).Disseminating active map information to mobile hosts,IEEE Network, Vol. 8, No. 5, 1994, pp.22–32.
Chen, G., & Kotz, D. (2000). A survey of context-aware mobile computing research (Vol. 1, No. 2.1, pp. 2-1). Technical Report TR2000-381, Dept. of Computer Science, Dartmouth College.

Chen, H., Finin, T., & Joshi, A. (2003). An ontology for context-aware pervasive computing environments. The Knowledge Engineering Review, 18(03), 197-207.

Dey, A.K. (1998). ‘Context-aware computing: the CyberDesk project’, Proceedings of the AAAI, Spring Symposium on Intelligent Environments, Menlo Park, CA, pp.51–54.

Delone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of management information systems, 19(4), 9-30.

Daconta, M. C., Smith, K. T., & Oerst, L. J. (2004). The Semantic Web: a guide to the future of XML, Web services, and knowledge management. Computing Reviews, 45(12), 778-779.

De Carolis, B., Mazzotta, I., Novielli, N., & Silvestri, V. (2009). Using common sense in providing personalized recommendations in the tourism domain.InWorkshop on Context-Aware Recommender Systems (CARS 2009).


Gruber, T. R. (1993). A translation approach to portable ontology pecifications.Knowledge acquisition, 5(2), 199-220.

G. Chen. (2002). Wireless Location-based Services, The Asia-Pacific Network Operations and Management Symposium.

Google Geo APIs Team. (2009, August). Creating a Store Locator with PHP, MySQL & Google Maps. Retrieved from https://developers.google.com/maps/articles/phpsqlsearch_v3

Hendler, J. (2001). Agents and the semantic web. IEEE Intelligent systems,16(2), 30-37.

Hong, J. Y., Suh, E. H., & Kim, S. J. (2009). Context-aware systems: A literature review and classification. Expert Systems with Applications, 36(4), 8509-8522.

J.Ben Schafer, Joseph Konstan, John Riedl. (1999). Recommender Systems in E-Commerce.

Linden, G., Smith, B., & York, J. (2003). Amazon. com recommendations: Item-to-item collaborative filtering. Internet Computing, IEEE, 7(1), 76-80.



Lops, P., De Gemmis, M., & Semeraro, G. (2011). Content-based recommender systems: State of the art and trends. In Recommender systems handbook (pp. 73-105). Springer US.

Mak, H., Koprinska, I., & Poon, J. (2003, October). Intimate: A web-based movie recommender using text categorization. In Web Intelligence, 2003. WI 2003. Proceedings. IEEE/WIC International Conference on (pp.602-605).IEEE.

Oku, K., Nakajima, S., Miyazaki, J., & Uemura, S. (2006, May). Context-aware SVM for context-dependent information recommendation. In Mobile Data Management, 2006. MDM 2006. 7th International Conference on (pp. 109-109). IEEE.

Resnick, P., and Varian, H. R. “Recommender Systems,” Communications of ACM, Vol. 40, 1997, pp. 56-58.

Ryan, N. S., Pascoe, J., & Morse, D. R. (1998). Enhanced reality fieldwork: the context-aware archaeological assistant. In Computer applications in archaeology.Tempus Reparatum.

Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems handbook. In Recommender systems handbook (pp. 1-35). Springer US.


R. Burke,“Hybrid recommender systems: Survey and experiments,” User Modeling and User-Adapted Interaction, vol. 12, no. 4, pp. 331–370, 2002.
Surprenant, C. F. and M. R. Solomon.(1987). “Predictability and Personalization in the Service Encounter,” Journal of Marketing, Vol. 51, pp.86-89.

Schilit, B., Adams, N., & Want, R. (1994, December). Context-aware computing applications. In Mobile Computing Systems and Applications, 1994. WMCSA 1994. First Workshop on (pp. 85-90). IEEE.
Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge engineering: principles and methods. Data & knowledge engineering, 25(1), 161-197.

Sarwar, B. G., Karypis, Konstan J., & Riedl J. (2000). "Analysis of recommendation algorithms for e-commerce," Proceedings of The 2nd ACM Conference on Electronic Commerce, pp.158-167.

Weiser, M. (1991). ‘The computer for the 21st century’, Scientific American, pp.94–104.

Want, R., Hopper, A., Falcao, V. and Gibbons, J. (1992). ‘The active badge location system’, ACM Transactions on Information Systems, Vol. 10, No. 1, pp.91–102.

Web-Ontology(WebOnt) Working Group, Retrieve at: http://www.w3.org/2001/sw/WebOnt/.

Ziegler, C. N., McNee, S. M., Konstan, J. A., and Lausen, G. Improving recommendation lists through topic diversification. In Proceedings of the 14th World Wide Web Conference, Chiba, Japan, May 10–14, 2005, ACM Press, New York, NY, 2005, 22–32.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊