|
1. McKibbin, B. The biology of fracture healing in long bones. in J Bone Joint Surg [Br. 1978. Citeseer. 2. Chung, Y.G., et al., Surgical angiogenesis: a new approach to maintain osseous viability in xenotransplantation. Xenotransplantation, 2010. 17(1): p. 38-47. 3. Miura, M., et al., SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A, 2003. 100(10): p. 5807-12. 4. Graziano, A., et al., Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev, 2008. 4(1): p. 21-6. 5. Dimitrova-Nakov, S., et al., Dental stem cells: Progress and perspectives. World, 2013. 3: p. 001. 6. Nakashima, et al., application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod, 2005. 31(10): p. 711-8. 7. Altman,GH, et al., cell differentiation by mechanical stress. The FASEB Journal 2001. 16(2): p. 270-272. 8. Friedl, G., et al., Undifferentiated human mesenchymal stem cells (hMSCs) are highly sensitive to mechanical strain: transcriptionally controlled early osteo-chondrogenic response in vitro. Osteoarthritis Cartilage, 2007. 15(11): p. 1293-300. 9. Kearney, E.M., et al., Tensile strain as a regulator of mesenchymal stem cell osteogenesis. Ann Biomed Eng, 2010. 38(5): p. 1767-79. 10. Padilla, F., et al., Stimulation of bone repair with ultrasound: a review of the possible mechanic effects. Ultrasonics, 2014. 54(5): p. 1125-45. 11. Sim, W.Y., et al., A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation. Lab Chip, 2007. 7(12): p. 1775-82. 12. Fehrer, C., et al., Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell, 2007. 6(6): p. 745-57. 13. Rocca, A., et al., Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts. Int J Nanomedicine, 2015. 10: p. 433-45. 14. Frost, H.M., Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod, 1994. 64(3): p. 175-88. 15. Fukada, E. and I. Yasuda, On the piezoelectric effect of bone. J. Phys. Soc. Japan, 1957. 12(10): p. 1158-1162. 16. YASUDA, I., The Classic Fundamental Aspects of Fracture Treatment. Clinical Orthopaedics and Related Research, 1977. 124: p. 5-8. 17. Spadaro, J.A., Mechanical and electrical interactions in bone remodeling. Bioelectromagnetics, 1997. 18(3): p. 193-202. 18. Bassett, C.A. and R.O. Becker, Generation of electric potentials by bone in response to mechanical stress. Science, 1962. 137(3535): p. 1063-4. 19. Bassett, C.A., et al., Effects of Electric Currents on Bone in Vivo. Nature, 1964. 204: p. 652-4. 20. Becker, R.O., C.,et al., Bioelectric factors controlling bone structure. H. Frost. New York: Little Brown, 1964. 21. Yasuda, I., K.,et al., Dynamic callus and electric callus. J Bone Joint Surg A, 1955. 37: p. 1292-8. 22. Wiesmann, H., et al., Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochim Biophys Acta, 2001. 1538(1): p. 28-37. 23. Shi, G., et al., Electrical stimulation enhances viability of human cutaneous fibroblasts on conductive biodegradable substrates. J Biomed Mater Res A, 2008. 84(4): p. 1026-37. 24. Tsai, M.T., et al., Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. J Orthop Res, 2009. 27(9): p. 1169-74. 25. Meng, S., M. Rouabhia,et al, Electrical stimulation modulates osteoblast proliferation and bone protein production throughheparin-bioactivated conductive scaffolds. Bioelectromagnetics, 2013. 34(3): p. 189-99. 26. PR, S., et al., Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation. J Biomed Mater Res, 2002. 59(3): p. 144-506. 27. Meng, S., Z. Zhang, and M. Rouabhia, Accelerated osteoblast mineralization on a conductive substrate by multiple electrical stimulation. J Bone Miner Metab, 2011. 29(5): p. 535-44. 28. Hu, W.W., et al., Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Mater Sci Eng C Mater Biol Appl, 2014. 37(0): p. 28-36. 29. 徐藝庭, 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化 國立中 央大學 化學工程暨材料工程研究所學位論文, 2012: p. 34-35. 30. 陳敦祈, 以電刺激增進骨髓基質細胞骨分化之最佳化探討 Optimization of Electrical Stimulation for Improving Osteogenesis of Bone Marrow Stromal Cells 國立中央大學 化學工程暨材料工程研究所學位論文 2013. 31. Temenoff, J.S. and A.G. Mikos, Review: tissue engineering for regeneration of articular cartilage. Biomaterials, 2000. 21(5): p. 431-40. 32. Hutmacher, D.W., Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000. 21(24): p. 2529-43. 33. Jo, I., et al., Bone tissue engineering using marrow stromal cells. Biotechnology and Bioprocess Engineering, 2007. 12(1): p. 48-53. 34. Ohba, S., F. Yano, and U.-i. Chung, Tissue engineering of bone and cartilage. IBMS BoneKEy, 2009. 6(11): p. 405-419. 35. Gage, F.H., Mammalian neural stem cells. Science, 2000. 287(5457): p. 1433-8. 36. All Things Stem Cell, http://www.allthingsstemcell.com/glossary/#pluripotent]. 37. Caplan, A.I. and S.P. Bruder, Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med, 2001. 7(6): p. 259-64. 38. University, R. Cell Differentiation. http://cnx.org/contents/966c32cc-3d6f-4f4e-af4f-ea0c975e825c@4/Cellular_Differentiation]. 39. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-7. 40. Bruder, S.P. and B.S. Fox, Tissue engineering of bone. Cell based strategies. Clin Orthop Relat Res, 1999. 367(367 Suppl): p. S68-83. 41. Bruder, S.P., et al., Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res, 1998. 355(355 Suppl): p. S247-56. 42. MF, P., et al., Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science, 1999. 284(5411): p. 143-147. 43. Woodbury, D., et al., Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of neuroscience research, 2000. 61(4): p. 364-370. 44. Demarco, F.F., et al., Dental pulp tissue engineering. Braz Dent J, 2011. 22(1): p. 3-13. 45. Gronthos, S., et al., Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A, 2000. 97(25): p. 13625-30. 46. Seo, B.M., et al., Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 2004. 364(9429): p. 149-155. 47. Sonoyama, W., et al., Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod, 2008.34(2): p. 166-71. 48. Gandhi, A., T. Gandhi, and N. Madan, Dental pulp stem cells in endodontic research: a promising tool for tooth tissue engineering. 2011. 8: p. 335-340. 49. Dimitrova-Nakov, S., et al., Dental stem cells: Progress and perspectives. Stomatology, 2013. 2(3): p. 35-39 50. Gronthos, S., et al., Stem cell properties of human dental pulp stem cells. J Dent Res, 2002. 81(8): p. 531-5. 51. Huang, G.T., S. Gronthos, and S. Shi, Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res, 2009. 88(9): p. 792-806. 52. Erices, A., P. Conget, and J.J. Minguell, Mesenchymal progenitor cells in human umbilical cord blood. British journal of haematology, 2000. 109(1): p. 235-242. 53. Mao,J.J., et al., Craniofacial tissue engineering by stem cells. J Dent Res, 2006. 85(11): p. 966-979. 54. Stein, G.S., et al., Transcriptional control of osteoblast growth and differentiation. Physiol Rev, 1996. 76(2): p. 593-629. 55. Jaiswal, R.K., Adult Human Mesenchymal Stem Cell Differentiation to the Osteogenic or Adipogenic Lineage Is Regulated by Mitogen-activated Protein Kinase. Journal of Biological Chemistry, 2000. 275(13): p. 9645-9652. 56. Aubin, J.E., Advances in the osteoblast lineage. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire, 1998. 76(6): p. 899-910. 57. Marom, R., et al., Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells. J Cell Physiol, 2005. 202(1): p. 41-8. 58. Phinney, D.G., et al., Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. Journal of Cellular Biochemistry, 1999. 75(3): p. 424-436. 59. John,A.C. and David,S.M. ,Signal Transduction Laboratory. Available from: https://www.niehs.nih.gov/research/atniehs/labs/stl/. 60. Karsenty,G., Minireview: transcriptional control of osteoblast differentiation. Endocrinology, 2001. 142(7): p. 2731-2733. 61. Chen, G., C. Deng, and Y.P. Li, TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci, 2012. 8(2): p. 272-88. 62. Marie, P.J., F. Debiais, and E. Hay, Regulation of human cranial osteoblast phenotype by FGF-2, FGFR-2 and BMP-2 signaling. Histol Histopathol, 2002. 17(3): p. 877-85. 63. Nilsson, E.E. and M.K. Skinner, Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development.Biol Reprod, 2003. 69(4): p. 1265-72. 64. Rickard, D.J., et al., Bone morphogenetic protein-6 production in human osteoblastic cell lines. Selective regulation by estrogen. J Clin Invest, 1998. 101(2): p. 413-22. 65. Vimalraj, S., et al., Runx2: Structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol, 2015. 78: p. 202-208. 66. Phimphilai, M., et al., BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J Bone Miner Res, 2006. 21(4): p. 637-46. 67. Lian, J.B., et al., Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr, 2004. 14(1-2): p. 1-41. 68. Milona, M.A.,et al., Expression of alternatively spliced isoforms of human Sp7 in osteoblast-like cells. BMC Genomics, 2003. 4(1): p. 43. 69. Cao, Y., et al., Osterix, a transcription factor for osteoblast differentiation, mediates antitumor activity in murine osteosarcoma. Cancer Res, 2005. 65(4): p. 1124-8. 70. Raouf, A. and A. Seth, Discovery of osteoblast-associated genes using cDNA microarrays. Bone, 2002. 30(3): p. 463-71. 71. Hager, S., et al., Up-regulation of alkaline phosphatase expression in human primary osteoblasts by cocultivation with primary endothelial cells is mediated by p38 mitogen-activated protein kinase-dependent mRNA stabilization. Tissue Eng Part A, 2009. 15(11): p. 3437-47. 72. Maehata, Y., et al., Both direct and collagen-mediated signals are required for active vitamin D3-elicited differentiation of human osteoblastic cells: roles of osterix, an osteoblast-related transcription factor. Matrix Biol, 2006. 25(1): p. 47-58. 73. Kim, I.S., et al., Biphasic electric current stimulates proliferation and induces VEGF production in osteoblasts. Biochim Biophys Acta, 2006. 1763(9): p. 907-16. 74. Kim, I.S., et al., Novel effect of biphasic electric current on in vitro osteogenesis and cytokine production in human mesenchymal stromal cells. Tissue Eng Part A, 2009. 15(9): p. 2411-22. 75. Qi, M.C., et al., Mechanical strain induces osteogenic differentiation: Cbfa1 and Ets-1 expression in stretched rat mesenchymal stem cells. Int J Oral Maxillofac Surg, 2008. 37(5): p. 453-8. 76. Balint, R., N.J. Cassidy, and S.H. Cartmell, Electrical stimulation: a novel tool for tissue engineering. Tissue Eng Part B Rev, 2013. 19(1): p. 48-57. 77. Griffin, M., et al., Enhancement of differentiation and mineralisation of osteoblast-like cells by degenerate electrical waveform in an in vitro electrical stimulation model compared to capacitive coupling. PLoS One, 2013. 8(9): p. e72978. 78. Landry,P.S., et al., Electromagnetic fields can affect osteogenesis by increasing the rate of differentiation. Clin Orthop Relat Res, 1997(338): p. 262-267. 79. Kuzyk, P.R. and E.H. Schemitsch, The science of electrical stimulation therapy for fracture healing. Indian J Orthop, 2009. 43(2): p. 127-31. 80. Rahbek, U.L., et al., Interactions of low frequency, pulsed electromagnetic fields with living tissue: biochemical responses and clinical results. Oral Biosci Med, 2005. 2(1). 81. CT, B., et al., Signal transduction in electrically stimulated bone cells. J Bone Joint Surg Am, 2001. 83-A(10): p. 1514-1523. 82. Zhuang, H., et al., Electrical stimulation induces the level of TGF-β1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochemical and biophysical research communications, 1997. 237(2): p. 225-229. 83. McCullen, S.D., et al., Application of low-frequency alternating current electric fields via interdigitated electrodes: effects on cellular viability, cytoplasmic calcium, and osteogenic differentiation of human adipose-derived stem cells. Tissue Eng Part C Methods, 2010. 16(6): p. 1377-86. 84. Shi, G., Z. Zhang, and M. Rouabhia, The regulation of cell functions electrically using biodegradable polypyrrole-polylactide conductors. Biomaterials, 2008. 29(28): p. 3792-8. 85. Uysal, T., et al., Stimulation of bone formation by direct electrical current in an orthopedically expanded suture in the rat. The Korean Journal of Orthodontics, 2010. 40(2): p. 106. 86. Scheven, B.A., et al., Therapeutic ultrasound for dental tissue repair. Med Hypotheses, 2009. 73(4): p. 591-3. 87. Niu, L.N., et al., Intrafibrillar-silicified collagen scaffolds enhance the osteogenic capacity of human dental pulp stem cells. J Dent, 2014. 42(7): p. 839-49. 88. Kraft, D.C., et al., Human dental pulp cells exhibit bone cell-like responsiveness to fluid shear stress. Cytotherapy, 2011. 13(2): p. 214-26. 89. Ji, J., et al., The effect of mechanical loading on osteogenesis of human dental pulp stromal cells in a novel in vitro model. Cell Tissue Res, 2014. 358(1): p. 123-33. 90. Yu, V., et al., Dynamic hydrostatic pressure promotes differentiation of human dental pulp stem cells. Biochem Biophys Res Commun, 2009. 386(4): p. 661-5. 91. Blair, H.C., et al., Calcium and bone disease. Biofactors, 2011. 37(3): p. 159-167. 92. Lanyon, L., Osteocytes, strain detection, bone modeling and remodeling. Calcified tissue international, 1993. 53(1): p. S102-S107. 93. Strauss, P.G., et al., Gene expression during osteogenic differentiation in mandibular condyles in vitro. J Cell Biol, 1990. 110(4): p. 1369-78. 94. Weinreb, M., D. Shinar, and G.A. Rodan, Different pattern of alkaline phosphatase, osteopontin, and osteocalcin expression in developing rat bone visualized by in situ hybridization. Journal of Bone and Mineral Research, 1990. 5(8): p. 831-842. 95. Gronthos, S., et al., Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin. Journal of Bone and Mineral Research, 2003. 18(4): p. 716-722. 96. Huang, L., et al., Expression of preosteoblast markers and Cbfa-1 and Osterix gene transcripts in stromal tumour cells of giant cell tumour of bone. Bone, 2004. 34(3): p. 393-401. 97. Scott, I.C., et al., Mammalian BMP-1/Tolloid-related metalloproteinases, including novel family member mammalian Tolloid-like 2, have differential enzymatic activities and distributions of expression relevant to patterning and skeletogenesis. Developmental biology, 1999. 213(2): p. 283-300. 98. Kessler, E., et al., Bone morphogenetic protein-1: the type I procollagen C-proteinase. Science, 1996. 271(5247): p. 360-2. 99. Nagai, M. and M. Ota, Pulsating electromagnetic field stimulates mRNA expression of bone morphogenetic protein-2 and-4. Journal of dental research, 1994. 73(10): p. 1601-1605. 100. Lee, K.S., et al., Runx2 Is a Common Target of Transforming Growth Factor β1 and Bone Morphogenetic Protein 2, and Cooperation between Runx2 and Smad5 Induces Osteoblast-Specific Gene Expression in the Pluripotent Mesenchymal Precursor Cell Line C2C12. Mol Cell Biol, 2000. 20(23): p. 8783-92. 101. Wang, H., et al., Enhancement of stimulation-induced ERK activation in the spinal dorsal horn and gracile nucleus neurons in rats with peripheral nerve injury. Eur J Neurosci, 2004. 19(4): p. 884-90. 102. Kopf, J., et al., BMP2 and mechanical loading cooperatively regulate immediate early signalling events in the BMP pathway. BMC Biol, 2012. 10: p. 37. 103. Agell, N. et al. New nuclear functions for calmodulin. Cell Calcium. 1998, 23 (2-3): 115–121
|