跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/09/21 22:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭弘偉
研究生(外文):Hong-wei Guo
論文名稱:直接電刺激對於人類牙髓幹細胞在骨分化過程中基因調控與分化能力影響之研究
論文名稱(外文):The Effects of Direct Electrical Stimulation on Gene Regulation and Differentiation of Human Dental Pulp Stem Cells During Osteogenesis Process
指導教授:胡威文
指導教授(外文):Wei-wen Hu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:110
中文關鍵詞:聚吡咯電刺激成骨細胞牙髓幹細胞成骨相關基因
外文關鍵詞:polypyrroleelectrical stimulationosteoblasthDPSCosteoblast-related gene
相關次數:
  • 被引用被引用:1
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究在投藥促使人類牙髓幹細胞 (Human dental pulp stem cells,DPSC )往成骨細胞方向分化的條件下,同時以直流電進行直接電刺激,以探討電刺激在幹細胞骨分化過程中的影響。首先 DPSC 在可
導電之聚吡咯薄膜 Polypyrrole (PPy) 上進行培養,待細胞貼附後更換培養液為誘導骨分化培養基,並對電刺激組於第 0 天施加單次直流
電刺激,在第 14 天以鈣含量和細胞數的測定分析細胞分化能力。結
果顯示通電後細胞的分化能力增加至 2 到 3 倍,得知直接電刺激可顯
著增加 DPSC 的骨分化能力。接著利用定量即時聚合酶鏈鎖反應
(quantitative real-time PCR) 在第 0 天通電之後分別於第 0﹑2﹑4﹑6﹑8 和 10 天對電刺激組和非電刺激組別進行和骨分化相關基因的相對
表現量測定,發現 BMPs、VEGF、Runx-2 和 CALM 在培養前期有正向上調控,在培養後期 ALP、Col-1、Osx 和 BGLAP 受電刺激影響增加表現。而後由西方墨點法分析磷酸化 SMAD 表現結果證實:無論是否在有骨分化培養基的情況下,直接電刺激都明顯使 SMAD 磷酸化的比例增加,推測直接電刺激是藉由影響 SMAD 的訊息傳遞路徑影響幹細胞骨分化的能力。另外為找出較佳的電刺激時間點,規劃在不同時間點施加一次性的直接性電刺激,在第 0﹑2﹑4﹑6﹑8 和第10 天分別施加電刺激,各自在第 12﹑14 和第 21 天進行礦化程度的分析,得知於第 4 天通電的組別在促進骨分化的表現特別顯著。從另一個角度來看,從第 14 天之後的礦化分析結果得知,電刺激組增加礦化效果達到高,爾後隨培養時間拉長增加效果逐漸減少,因此判斷直接電刺激的輔助效果為加速骨分化而非增加骨生成的質量。
Substrate-mediated direct current (DC) was studied the effects of electrical stimulation (ES) on human dental pulp stem cells (hDPSC) during osteogenic process. Conductive polypyrrole (PPy) films were prepared as substrate for cell seeding. Osteogenic medium was applied to trigger cell differentiation, and a constant electric field (2 V/6 cm) was applied for 4 h once medium was supplied osteogenic contents. At Day 14, the mineralization of hDPSCs treated with DC stimulation were
highly improved that its calcium deposition was 2 to 3 times more than the untreated group. The transcriptions of osteo-differentiation relative genes were examined using quantitative real-time polymerase chain reaction (qPCR) at different days. The DC treatment was capable of immediately leading the enhancement of the transcriptions of BMPs, VEGF, Runx-2, and Osx, by which ALP, Col-1, and BGLAP were thus up-regulated with time. Although the levels of SMAD-1/5 were not affected, the Western blot results indicated that the phosphorylations of SMAD-1/5 were highly improved. It suggested the ES likely activated SMAD signal pathway to upregulate Runx-2 then improved osteogenesis. Finally, hDPSCs at different stages of osteo-differentiation were individually treated ES. The mineralization results revealed that osteogenesis were enhanced when hDPSCs were treated ES at early stages of osteo-differentiation, especially at Day 4. In contrast, there were almost no differences of mineralizations between the ES treatments at late stages and the untreated group. The improvement was extremely obvious for the calcium deposition at Day 12. However, the saturated calcium deposition of ES treated and untreated groups at Day 21 were almost the same. These results suggested that ES treatment likely accelerated osteo-differentiation.
摘要 I
Abstract III
致謝 IV
目錄 VI
圖表目錄 VIII
第一章 緒論 1
1-1 研究動機 1
1-2 實驗目的 4
第二章 文獻回顧與理論基礎 5
2-1 組織工程 5
2-2 幹細胞 7
2-3 牙髓間質幹細胞 9
2-4 骨分化過程簡述 11
2-5 骨分化相關生物分子及基因 13
2-6 電刺激 19
第三章 實驗方法與設備 23
3-1實驗藥品及儀器 23
3-2 試劑材料製備與實驗方法 29
3-2-1 Polypyrrole製備、電刺激裝置製作 29
3-2-2細胞冷凍解凍、培養繼代 31
3-2-3 電刺激與骨分化條件 33
3-2-4 MTT Assay 36
3-2-5 LDH Assay 37
3-2-6茜素紅染色(Alizarin Red Staining, ARS) 38
3-2-7 Calcium-O-Cresophtalein Complexone 39
3-2-8 Purification of Total RNA from Animal Cells Using Spin Technology-RNeasy Mini Kit 41
3-2-9 SuperScript III First-Strand Synthesis System for RT-PCR 43
3-2-10 Real-Time PCR (Quantitative Polymerase Chain Reaction) 45
3-2-11 蛋白質定量分析 46
3-2-12 蛋白質體電泳 (SDS-PAGE) 47
3-2-13西方墨點分析法 (Western Blot analysis) 50
3-3 實驗架構設計 54
3-3-1 直接電刺激對骨分化的影響 54
3-3-2 不同時間點電刺激對骨分化的影響 55
3-4 生物性質分析 56
3-4-1 茜素紅染色(Alizarin Red Staining, ARS) 56
3-4-2 Calcium-O-Cresolphthalein Complexone 57
3-4-3 即時聚合脢連鎖反應real-time PCR 58
3-4-4 西方墨點法 60
第四章 結果與討論 61
4-1 直接電刺激對骨分化的影響 61
4-1-1 茜素紅染色與鈣離子沉積分析骨分化效果 61
4-1-2 即時聚合脢連鎖反應 ( Real-Time PCR ) 65
4-1-3 西方墨點法 79
4-2 不同時間點電刺激對骨分化的影響 81
4-2-1 茜素紅與鈣離子沉積分析骨分化效果 81
第五章 結論 90
參考資料 92

1. McKibbin, B. The biology of fracture healing in long bones. in J Bone Joint Surg [Br. 1978. Citeseer.
2. Chung, Y.G., et al., Surgical angiogenesis: a new approach to maintain osseous viability in xenotransplantation. Xenotransplantation, 2010. 17(1): p.
38-47.
3. Miura, M., et al., SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A, 2003. 100(10): p. 5807-12.
4. Graziano, A., et al., Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev, 2008. 4(1): p. 21-6.
5. Dimitrova-Nakov, S., et al., Dental stem cells: Progress and perspectives. World, 2013. 3: p. 001.
6. Nakashima, et al., application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod, 2005. 31(10): p. 711-8.
7. Altman,GH, et al., cell differentiation by mechanical stress. The FASEB Journal 2001. 16(2): p. 270-272.
8. Friedl, G., et al., Undifferentiated human mesenchymal stem cells (hMSCs) are highly sensitive to mechanical strain: transcriptionally controlled early
osteo-chondrogenic response in vitro. Osteoarthritis Cartilage, 2007. 15(11): p. 1293-300.
9. Kearney, E.M., et al., Tensile strain as a regulator of mesenchymal stem cell osteogenesis. Ann Biomed Eng, 2010. 38(5): p. 1767-79.
10. Padilla, F., et al., Stimulation of bone repair with ultrasound: a review of the possible mechanic effects. Ultrasonics, 2014. 54(5): p. 1125-45.
11. Sim, W.Y., et al., A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation. Lab Chip, 2007. 7(12): p. 1775-82.
12. Fehrer, C., et al., Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell, 2007.
6(6): p. 745-57.
13. Rocca, A., et al., Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts. Int J Nanomedicine, 2015. 10: p. 433-45.
14. Frost, H.M., Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod, 1994. 64(3): p. 175-88.
15. Fukada, E. and I. Yasuda, On the piezoelectric effect of bone. J. Phys. Soc. Japan, 1957. 12(10): p. 1158-1162.
16. YASUDA, I., The Classic Fundamental Aspects of Fracture Treatment. Clinical Orthopaedics and Related Research, 1977. 124: p. 5-8.
17. Spadaro, J.A., Mechanical and electrical interactions in bone remodeling. Bioelectromagnetics, 1997. 18(3): p. 193-202.
18. Bassett, C.A. and R.O. Becker, Generation of electric potentials by bone in response to mechanical stress. Science, 1962. 137(3535): p. 1063-4.
19. Bassett, C.A., et al., Effects of Electric Currents on Bone in Vivo. Nature, 1964. 204: p. 652-4.
20. Becker, R.O., C.,et al., Bioelectric factors controlling bone structure. H. Frost. New York: Little Brown, 1964.
21. Yasuda, I., K.,et al., Dynamic callus and electric callus. J Bone Joint Surg A, 1955. 37: p. 1292-8.
22. Wiesmann, H., et al., Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochim Biophys Acta, 2001. 1538(1): p. 28-37.
23. Shi, G., et al., Electrical stimulation enhances viability of human cutaneous fibroblasts on conductive biodegradable substrates. J Biomed Mater Res A, 2008. 84(4): p. 1026-37.
24. Tsai, M.T., et al., Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. J Orthop Res, 2009.
27(9): p. 1169-74.
25. Meng, S., M. Rouabhia,et al, Electrical stimulation modulates osteoblast
proliferation and bone protein production throughheparin-bioactivated conductive scaffolds. Bioelectromagnetics, 2013. 34(3): p. 189-99.
26. PR, S., et al., Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation. J Biomed Mater Res, 2002.
59(3): p. 144-506.
27. Meng, S., Z. Zhang, and M. Rouabhia, Accelerated osteoblast mineralization on a conductive substrate by multiple electrical stimulation. J Bone Miner Metab, 2011. 29(5): p. 535-44.
28. Hu, W.W., et al., Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Mater Sci Eng C Mater Biol Appl, 2014. 37(0): p. 28-36.
29. 徐藝庭,
利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化 國立中
央大學 化學工程暨材料工程研究所學位論文, 2012: p. 34-35.
30. 陳敦祈, 以電刺激增進骨髓基質細胞骨分化之最佳化探討
Optimization of Electrical Stimulation for Improving Osteogenesis of Bone Marrow Stromal
Cells 國立中央大學 化學工程暨材料工程研究所學位論文 2013.
31. Temenoff, J.S. and A.G. Mikos, Review: tissue engineering for regeneration of articular cartilage. Biomaterials, 2000. 21(5): p. 431-40.
32. Hutmacher, D.W., Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000. 21(24): p. 2529-43.
33. Jo, I., et al., Bone tissue engineering using marrow stromal cells. Biotechnology and Bioprocess Engineering, 2007. 12(1): p. 48-53.
34. Ohba, S., F. Yano, and U.-i. Chung, Tissue engineering of bone and cartilage. IBMS BoneKEy, 2009. 6(11): p. 405-419.
35. Gage, F.H., Mammalian neural stem cells. Science, 2000. 287(5457): p. 1433-8.
36. All Things Stem Cell, http://www.allthingsstemcell.com/glossary/#pluripotent].
37. Caplan, A.I. and S.P. Bruder, Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med, 2001. 7(6): p. 259-64.
38. University, R. Cell Differentiation.
http://cnx.org/contents/966c32cc-3d6f-4f4e-af4f-ea0c975e825c@4/Cellular_Differentiation].
39. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-7.
40. Bruder, S.P. and B.S. Fox, Tissue engineering of bone. Cell based strategies. Clin Orthop Relat Res, 1999. 367(367 Suppl): p. S68-83.
41. Bruder, S.P., et al., Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res, 1998. 355(355 Suppl): p. S247-56.
42. MF, P., et al., Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science, 1999. 284(5411): p. 143-147.
43. Woodbury, D., et al., Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of neuroscience research, 2000. 61(4): p. 364-370.
44. Demarco, F.F., et al., Dental pulp tissue engineering. Braz Dent J, 2011. 22(1): p. 3-13.
45. Gronthos, S., et al., Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A, 2000. 97(25): p. 13625-30.
46. Seo, B.M., et al., Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 2004. 364(9429): p. 149-155.
47. Sonoyama, W., et al., Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod, 2008.34(2): p. 166-71.
48. Gandhi, A., T. Gandhi, and N. Madan, Dental pulp stem cells in endodontic research: a promising tool for tooth tissue engineering. 2011. 8: p. 335-340.
49. Dimitrova-Nakov, S., et al., Dental stem cells: Progress and perspectives.
Stomatology, 2013. 2(3): p. 35-39
50. Gronthos, S., et al., Stem cell properties of human dental pulp stem cells. J
Dent Res, 2002. 81(8): p. 531-5.
51. Huang, G.T., S. Gronthos, and S. Shi, Mesenchymal stem cells derived from
dental tissues vs. those from other sources: their biology and role in
regenerative medicine. J Dent Res, 2009. 88(9): p. 792-806.
52. Erices, A., P. Conget, and J.J. Minguell, Mesenchymal progenitor cells in
human umbilical cord blood. British journal of haematology, 2000. 109(1): p.
235-242.
53. Mao,J.J., et al., Craniofacial tissue engineering by stem cells. J Dent Res,
2006. 85(11): p. 966-979.
54. Stein, G.S., et al., Transcriptional control of osteoblast growth and
differentiation. Physiol Rev, 1996. 76(2): p. 593-629.
55. Jaiswal, R.K., Adult Human Mesenchymal Stem Cell Differentiation to the
Osteogenic or Adipogenic Lineage Is Regulated by Mitogen-activated Protein
Kinase. Journal of Biological Chemistry, 2000. 275(13): p. 9645-9652.
56. Aubin, J.E., Advances in the osteoblast lineage. Biochemistry and Cell
Biology-Biochimie Et Biologie Cellulaire, 1998. 76(6): p. 899-910.
57. Marom, R., et al., Characterization of adhesion and differentiation markers of
osteogenic marrow stromal cells. J Cell Physiol, 2005. 202(1): p. 41-8.
58. Phinney, D.G., et al., Donor variation in the growth properties and osteogenic
potential of human marrow stromal cells. Journal of Cellular Biochemistry,
1999. 75(3): p. 424-436.
59. John,A.C. and David,S.M. ,Signal Transduction Laboratory. Available from:
https://www.niehs.nih.gov/research/atniehs/labs/stl/.
60. Karsenty,G., Minireview: transcriptional control of osteoblast differentiation.
Endocrinology, 2001. 142(7): p. 2731-2733.
61. Chen, G., C. Deng, and Y.P. Li, TGF-beta and BMP signaling in osteoblast
differentiation and bone formation. Int J Biol Sci, 2012. 8(2): p. 272-88.
62. Marie, P.J., F. Debiais, and E. Hay, Regulation of human cranial osteoblast
phenotype by FGF-2, FGFR-2 and BMP-2 signaling. Histol Histopathol, 2002.
17(3): p. 877-85.
63. Nilsson, E.E. and M.K. Skinner, Bone morphogenetic protein-4 acts as an
ovarian follicle survival factor and promotes primordial follicle development.Biol Reprod, 2003. 69(4): p. 1265-72.
64. Rickard, D.J., et al., Bone morphogenetic protein-6 production in human
osteoblastic cell lines. Selective regulation by estrogen. J Clin Invest, 1998.
101(2): p. 413-22.
65. Vimalraj, S., et al., Runx2: Structure, function, and phosphorylation in
osteoblast differentiation. Int J Biol Macromol, 2015. 78: p. 202-208.
66. Phimphilai, M., et al., BMP signaling is required for RUNX2-dependent
induction of the osteoblast phenotype. J Bone Miner Res, 2006. 21(4): p.
637-46.
67. Lian, J.B., et al., Regulatory controls for osteoblast growth and differentiation:
role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr, 2004. 14(1-2):
p. 1-41.
68. Milona, M.A.,et al., Expression of alternatively spliced isoforms of human Sp7
in osteoblast-like cells. BMC Genomics, 2003. 4(1): p. 43.
69. Cao, Y., et al., Osterix, a transcription factor for osteoblast differentiation,
mediates antitumor activity in murine osteosarcoma. Cancer Res, 2005. 65(4):
p. 1124-8.
70. Raouf, A. and A. Seth, Discovery of osteoblast-associated genes using cDNA
microarrays. Bone, 2002. 30(3): p. 463-71.
71. Hager, S., et al., Up-regulation of alkaline phosphatase expression in human
primary osteoblasts by cocultivation with primary endothelial cells is
mediated by p38 mitogen-activated protein kinase-dependent mRNA
stabilization. Tissue Eng Part A, 2009. 15(11): p. 3437-47.
72. Maehata, Y., et al., Both direct and collagen-mediated signals are required for
active vitamin D3-elicited differentiation of human osteoblastic cells: roles of
osterix, an osteoblast-related transcription factor. Matrix Biol, 2006. 25(1): p.
47-58.
73. Kim, I.S., et al., Biphasic electric current stimulates proliferation and induces
VEGF production in osteoblasts. Biochim Biophys Acta, 2006. 1763(9): p.
907-16.
74. Kim, I.S., et al., Novel effect of biphasic electric current on in vitro
osteogenesis and cytokine production in human mesenchymal stromal cells.
Tissue Eng Part A, 2009. 15(9): p. 2411-22.
75. Qi, M.C., et al., Mechanical strain induces osteogenic differentiation: Cbfa1
and Ets-1 expression in stretched rat mesenchymal stem cells. Int J Oral
Maxillofac Surg, 2008. 37(5): p. 453-8.
76. Balint, R., N.J. Cassidy, and S.H. Cartmell, Electrical stimulation: a novel tool
for tissue engineering. Tissue Eng Part B Rev, 2013. 19(1): p. 48-57.
77. Griffin, M., et al., Enhancement of differentiation and mineralisation of
osteoblast-like cells by degenerate electrical waveform in an in vitro electrical
stimulation model compared to capacitive coupling. PLoS One, 2013. 8(9): p.
e72978.
78. Landry,P.S., et al., Electromagnetic fields can affect osteogenesis by increasing
the rate of differentiation. Clin Orthop Relat Res, 1997(338): p. 262-267.
79. Kuzyk, P.R. and E.H. Schemitsch, The science of electrical stimulation
therapy for fracture healing. Indian J Orthop, 2009. 43(2): p. 127-31.
80. Rahbek, U.L., et al., Interactions of low frequency, pulsed electromagnetic
fields with living tissue: biochemical responses and clinical results. Oral
Biosci Med, 2005. 2(1).
81. CT, B., et al., Signal transduction in electrically stimulated bone cells. J Bone
Joint Surg Am, 2001. 83-A(10): p. 1514-1523.
82. Zhuang, H., et al., Electrical stimulation induces the level of TGF-β1 mRNA in
osteoblastic cells by a mechanism involving calcium/calmodulin pathway.
Biochemical and biophysical research communications, 1997. 237(2): p.
225-229.
83. McCullen, S.D., et al., Application of low-frequency alternating current
electric fields via interdigitated electrodes: effects on cellular viability,
cytoplasmic calcium, and osteogenic differentiation of human adipose-derived
stem cells. Tissue Eng Part C Methods, 2010. 16(6): p. 1377-86.
84. Shi, G., Z. Zhang, and M. Rouabhia, The regulation of cell functions
electrically using biodegradable polypyrrole-polylactide conductors.
Biomaterials, 2008. 29(28): p. 3792-8.
85. Uysal, T., et al., Stimulation of bone formation by direct electrical current in
an orthopedically expanded suture in the rat. The Korean Journal of
Orthodontics, 2010. 40(2): p. 106.
86. Scheven, B.A., et al., Therapeutic ultrasound for dental tissue repair. Med
Hypotheses, 2009. 73(4): p. 591-3.
87. Niu, L.N., et al., Intrafibrillar-silicified collagen scaffolds enhance the
osteogenic capacity of human dental pulp stem cells. J Dent, 2014. 42(7): p.
839-49.
88. Kraft, D.C., et al., Human dental pulp cells exhibit bone cell-like
responsiveness to fluid shear stress. Cytotherapy, 2011. 13(2): p. 214-26.
89. Ji, J., et al., The effect of mechanical loading on osteogenesis of human dental
pulp stromal cells in a novel in vitro model. Cell Tissue Res, 2014. 358(1): p.
123-33.
90. Yu, V., et al., Dynamic hydrostatic pressure promotes differentiation of human dental pulp stem cells. Biochem Biophys Res Commun, 2009. 386(4): p.
661-5.
91. Blair, H.C., et al., Calcium and bone disease. Biofactors, 2011. 37(3): p.
159-167.
92. Lanyon, L., Osteocytes, strain detection, bone modeling and remodeling.
Calcified tissue international, 1993. 53(1): p. S102-S107.
93. Strauss, P.G., et al., Gene expression during osteogenic differentiation in
mandibular condyles in vitro. J Cell Biol, 1990. 110(4): p. 1369-78.
94. Weinreb, M., D. Shinar, and G.A. Rodan, Different pattern of alkaline
phosphatase, osteopontin, and osteocalcin expression in developing rat bone
visualized by in situ hybridization. Journal of Bone and Mineral Research,
1990. 5(8): p. 831-842.
95. Gronthos, S., et al., Telomerase accelerates osteogenesis of bone marrow
stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin. Journal
of Bone and Mineral Research, 2003. 18(4): p. 716-722.
96. Huang, L., et al., Expression of preosteoblast markers and Cbfa-1 and Osterix
gene transcripts in stromal tumour cells of giant cell tumour of bone. Bone,
2004. 34(3): p. 393-401.
97. Scott, I.C., et al., Mammalian BMP-1/Tolloid-related metalloproteinases,
including novel family member mammalian Tolloid-like 2, have differential
enzymatic activities and distributions of expression relevant to patterning and
skeletogenesis. Developmental biology, 1999. 213(2): p. 283-300.
98. Kessler, E., et al., Bone morphogenetic protein-1: the type I procollagen
C-proteinase. Science, 1996. 271(5247): p. 360-2.
99. Nagai, M. and M. Ota, Pulsating electromagnetic field stimulates mRNA
expression of bone morphogenetic protein-2 and-4. Journal of dental research,
1994. 73(10): p. 1601-1605.
100. Lee, K.S., et al., Runx2 Is a Common Target of Transforming Growth Factor
β1 and Bone Morphogenetic Protein 2, and Cooperation between Runx2 and
Smad5 Induces Osteoblast-Specific Gene Expression in the Pluripotent
Mesenchymal Precursor Cell Line C2C12. Mol Cell Biol, 2000. 20(23): p.
8783-92.
101. Wang, H., et al., Enhancement of stimulation-induced ERK activation in the
spinal dorsal horn and gracile nucleus neurons in rats with peripheral nerve
injury. Eur J Neurosci, 2004. 19(4): p. 884-90.
102. Kopf, J., et al., BMP2 and mechanical loading cooperatively regulate
immediate early signalling events in the BMP pathway. BMC Biol, 2012. 10: p.
37.
103. Agell, N. et al. New nuclear functions for calmodulin. Cell Calcium.
1998, 23 (2-3): 115–121
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊