[1]Yuan, S., Shen, F., Bai, J., Chua, C. K., Wei, J., & Zhou, K. (2017). 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization. Materials & Design, 120, 317-327.
[2]Limmahakhun, S., Oloyede, A., Sitthiseripratip, K., Xiao, Y., & Yan, C. (2017). 3D-printed cellular structures for bone biomimetic implants. Additive Manufacturing, 15, 93-101.
[3]Nasim, M. S., & Etemadi, E. (2018). Three dimensional modeling of warp and woof periodic auxetic cellular structure. International Journal of Mechanical Sciences, 136, 475-481.
[4]Yang, C., Vora, H. D., & Chang, Y. (2018). Behavior of auxetic structures under compression and impact forces. Smart Materials and Structures, 27(2), 025012.
[5]Correa, D. M., Seepersad, C. C., & Haberman, M. R. (2015). Mechanical design of negative stiffness honeycomb materials. Integrating Materials and Manufacturing Innovation, 4(1), 10.
[6]Park, H., Yu, R., & Lee, J. (2018, November). Multi-segment foot modeling for human animation. In Proceedings of the 11th Annual International Conference on Motion, Interaction, and Games (p. 16). ACM.
[7]Moore, K. L., Dalley, A. F., & Agur, A. M. (2013). Clinically oriented anatomy. Lippincott Williams & Wilkins.
[8]Mohammed, S., Same, A., Oukhellou, L., Kong, K., Huo, W., & Amirat, Y. (2016). Recognition of gait cycle phases using wearable sensors. Robotics and Autonomous Systems, 75, 50-59.
[9]Deng, M., Wang, C., & Zheng, T. (2018). Individual identification using a gait dynamics graph. Pattern Recognition.
[10]Shetty, N., & Bendall, S. (2011). (i) Understanding the gait cycle, as it relates to the foot. Orthopaedics and Trauma, 25(4), 236-240.
[11]Brown, T. N., O’Donovan, M., Hasselquist, L., Corner, B. D., & Schiffman, J. M. (2014). Body borne loads impact walk-to-run and running biomechanics. Gait & posture, 40(1), 237-242.
[12]Simpson, K. M., Munro, B. J., & Steele, J. R. (2012). Effects of prolonged load carriage on ground reaction forces, lower limb kinematics and spatio-temporal parameters in female recreational hikers. Ergonomics, 55(3), 316-326.
[13]Tajima, T., Tateuchi, H., Koyama, Y., Ikezoe, T., & Ichihashi, N. (2018). Gait strategies to reduce the dynamic joint load in the lower limbs during a loading response in young healthy adults. Human movement science, 58, 260-267.
[14]Pérez-Morcillo, A., Gómez-Bernal, A., Gil-Guillen, V. F., Alfaro-Santafé, J., Alfaro-Santafé, J. V., Quesada, J. A., ... & Carratalá-Munuera, C. (2019). Association between the Foot Posture Index and running related injuries: A case-control study. Clinical Biomechanics, 61, 217-221.
[15]Zhang, X., Delabastita, T., Lissens, J., De Beenhouwer, F., & Vanwanseele, B. (2018). The morphology of foot soft tissues is associated with running shoe type in healthy recreational runners. Journal of science and medicine in sport, 21(7), 686-690.
[16]Shaulian, H., Solomonow-Avnon, D., Herman, A., Rozen, N., Haim, A., & Wolf, A. (2018). The effect of center of pressure alteration on the ground reaction force during gait: A statistical model. Gait & posture, 66, 107-113.
[17]Keller, T. S., Weisberger, A. M., Ray, J. L., Hasan, S. S., Shiavi, R. G., & Spengler, D. M. (1996). Relationship between vertical ground reaction force and speed during walking, slow jogging, and running. Clinical biomechanics, 11(5), 253-259.
[18]Daoud, A. I., Geissler, G. J., Wang, F., Saretsky, J., Daoud, Y. A., & Lieberman, D. E. (2012). Foot strike and injury rates in endurance runners: a retrospective study. Med Sci Sports Exerc, 44(7), 1325-34.
[19]Zulkifli, S. S., & Ping, L. W. (2018). A state-of-the-art review of foot pressure. Foot and Ankle Surgery.
[20]Telfer, S., & Bigham, J. (2018). The Influence of Population Characteristics and Measurement System on Barefoot Plantar Pressures: A Systematic Review and Meta-Regression Analysis. Gait & posture.
[21]Razak, A., Hadi, A., Zayegh, A., Begg, R. K., & Wahab, Y. (2012). Foot plantar pressure measurement system: A review. Sensors, 12(7), 9884-9912.
[22]Keijsers, N. L. W., Stolwijk, N. M., & Pataky, T. C. (2010). Linear dependence of peak, mean, and pressure–time integral values in plantar pressure images. Gait & posture, 31(1), 140-142.
[23]Branthwaite, H., & Chockalingam, N. (2019). Everyday footwear: an overview of what we know and what we should know on ill-fitting footwear and associated pain and pathology. The Foot.
[24]Williams, J. T. (Ed.). (2017). Waterproof and Water Repellent Textiles and Clothing. Woodhead Publishing.
[25]Bus, S. A. (2012). Priorities in offloading the diabetic foot. Diabetes/metabolism research and reviews, 28, 54-59.
[26]Leber, C., & Evanski, P. M. (1986). A comparison of shoe insole materials in plantar pressure relief. Prosthetics and Orthotics International, 10(3), 135-138.
[27]Zhang, X., Li, B., Liang, K., Wan, Q., & Vanwanseele, B. (2016). An optimized design of in-shoe heel lifts reduces plantar pressure of healthy males. Gait & posture, 47, 43-47.
[28]Caravaggi, P., Giangrande, A., Lullini, G., Padula, G., Berti, L., & Leardini, A. (2016). In shoe pressure measurements during different motor tasks while wearing safety shoes: The effect of custom made insoles vs. prefabricated and off-the-shelf. Gait & posture, 50, 232-238.
[29]Chatzistergos, P. E., Naemi, R., Healy, A., Gerth, P., & Chockalingam, N. (2017). Subject Specific Optimisation of the Stiffness of Footwear Material for Maximum Plantar Pressure Reduction. Annals of biomedical engineering, 45(8), 1929-1940
[30]Mueller, M. J. (1999). Application of plantar pressure assessment in footwear and insert design. Journal of orthopaedic & sports physical therapy, 29(12), 747-755.
[31]Ly, Q. H., Alaoui, A., Erlicher, S., & Baly, L. (2010). Towards a footwear design tool: Influence of shoe midsole properties and ground stiffness on the impact force during running. Journal of biomechanics, 43(2), 310-317.
[32]Milani, T. L., Hennig, E. M., & Lafortune, M. A. (1997). Perceptual and biomechanical variables for running in identical shoe constructions with varying midsole hardness. Clinical biomechanics, 12(5), 294-300.
[33]Stewart, S., Dalbeth, N., McNair, P., Parmar, P., Gow, P., & Rome, K. (2014). The effect of good and poor walking shoe characteristics on plantar pressure and gait in people with gout. Clinical Biomechanics, 29(10), 1158-1163.
[34]Dinato, R. C., Ribeiro, A. P., Butugan, M. K., Pereira, I. L., Onodera, A. N., & Sacco, I. C. (2015). Biomechanical variables and perception of comfort in running shoes with different cushioning technologies. Journal of Science and Medicine in Sport, 18(1), 93-97.
[35]Cook, S. D., Kester, M. A., & Brunet, M. E. (1985). Shock absorption characteristics of running shoes. The American journal of sports medicine, 13(4), 248-253.
[36]Oh, K., & Park, S. (2017). The bending stiffness of shoes is beneficial to running energetics if it does not disturb the natural MTP joint flexion. Journal of biomechanics, 53, 127-135.
[37]Flores, N., Delattre, N., Berton, E., & Rao, G. (2018). Does an increase in energy return and/or longitudinal bending stiffness shoe features reduce the energetic cost of running?. European journal of applied physiology, 1-11.
[38]Diegel, O. (2014). Additive Manufacturing: An Overview.
[39]Roschli, A., Gaul, K. T., Boulger, A. M., Post, B. K., Chesser, P. C., Love, L. J., ... & Borish, M. (2019). Designing for Big Area Additive Manufacturing. Additive Manufacturing, 25, 275-285.
[40]Davia-Aracil, M., Hinojo-Pérez, J. J., Jimeno-Morenilla, A., & Mora-Mora, H. (2018). 3D printing of functional anatomical insoles. Computers in Industry, 95, 38-53.
[41]“ASTM 52910:2018(E) Additive manufacturing — Design — Requirements, guidelines and recommendations. ”
[42]Liu, Y., & Hu, H. (2010). A review on auxetic structures and polymeric materials. Scientific Research and Essays, 5(10), 1052-1063.
[43]Verdejo, R., & Mills, N. J. (2004). Heel–shoe interactions and the durability of EVA foam running-shoe midsoles. Journal of biomechanics, 37(9), 1379-1386.
[44]Li, Y., Leong, K. F., & Gu, Y. (2018). Construction and finite element analysis of a coupled finite element model of foot and barefoot running footwear. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 1754337118803540.
[45]Calise, G. J., & Saigal, A. (2018, November). Mechanical Behavior of Octahedral and Octet Structures Produced From CLIP Technology. In ASME 2018 International Mechanical Engineering Congress and Exposition (pp. V002T02A063-V002T02A063). American Society of Mechanical Engineers.
[46]Egan, P. F., Bauer, I., Shea, K., & Ferguson, S. J. (2019). Mechanics of three-dimensional printed lattices for biomedical devices. Journal of Mechanical Design, 141(3), 031703.
[47]Lin, S. C., Chen, C. P. C., Tang, S. F. T., Chen, C. W., Wang, J. J., Hsu, C. C., ... & Chen, W. P. (2014). Stress distribution within the plantar aponeurosis during walking—a dynamic finite element analysis. Journal of Mechanics in Medicine and Biology, 14(04), 1450053.
[48]林一嘉, "前端弧形鞋底設計對於步態站立期間足底筋膜負載之影響," 碩士論文,國立臺北科技大學製造科技研究所,臺北,2013.[49]黃司辰, "不同蹠骨墊設計與擺放位置對於足底壓力分佈之影響," 碩士論文, 國立臺北科技大學機電整合研究所, 臺北, 2014.[50]"ASTM D3575-14 Standard Test Methods for Flexible Cellular Materials Made From Olefin Polymers".
[51]"ASTM D3574-17 Standard Test Methods for Flexible Cellular Materials - Slab, Bonded, and Molded Urethane Foams ".
[52]" ASTM F1976-13 Standard Test Method for Impact Attenuation of Athletic Shoe Cushioning Systems and Materials "
[53]Stefanyshyn, D. J., & Nigg, B. M. (2003). Energy and performance aspects in sports surfaces. Sport Surfaces–Biomechanics, Injuries, Performance, Testing and Installation, Editors. BM Nigg, GK Cole and DJ Stefanyshyn, University of Calgary, Calgary, Canada, 31-46.
[54]Schwanitz, S., Möser, S., & Odenwald, S. (2010). Comparison of test methods to quantify shock attenuating properties of athletic footwear. Procedia Engineering, 2(2), 2805-2810.
[55]Zhang, L., Yao, X., Zang, S., & Gu, Y. (2015). Temperature‐and strain rate‐dependent constitutive modeling of the large deformation behavior of a transparent polyurethane interlayer. Polymer Engineering & Science, 55(8), 1864-1872.
[56]Hallquist, J. O. (2007). LS-DYNA keyword user’s manual. Livermore Software Technology Corporation, 970, 299-800.
[57]Zmetra, K. (2015). Repair of Corrosion Damaged Steel Bridge Girder Ends by Encasement in Ultra-High Strength Concrete (Doctoral dissertation, University of Connecticut).
[58]Leardini, A., Benedetti, M. G., Berti, L., Bettinelli, D., Nativo, R., & Giannini, S. (2007). Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait & posture, 25(3), 453-462.
[59]Wu, G., & Cavanagh, P. R. (1995). ISB recommendations for standardization in the reporting of kinematic data. Journal of biomechanics, 28(10), 1257-1261.
[60]Erdemir, A., Saucerman, J. J., Lemmon, D., Loppnow, B., Turso, B., Ulbrecht, J. S., & Cavanagh, P. R. (2005). Local plantar pressure relief in therapeutic footwear: design guidelines from finite element models. Journal of biomechanics, 38(9), 1798-1806.
[61]Bi, H., Ren, Z., Guo, R., Xu, M., & Song, Y. (2018). Fabrication of flexible wood flour/thermoplastic polyurethane elastomer composites using fused deposition molding. Industrial crops and products, 122, 76-84.
[62]Chen, Q., Mangadlao, J. D., Wallat, J., De Leon, A., Pokorski, J. K., & Advincula, R. C. (2017). 3D printing biocompatible polyurethane/poly (lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS applied materials & interfaces, 9(4), 4015-4023.
[63]Dang, L. N., Le Hoang, S., Malin, M., Weisser, J., Walter, T., Schnabelrauch, M., & Seppälä, J. (2016). Synthesis and characterization of castor oil-segmented thermoplastic polyurethane with controlled mechanical properties. European Polymer Journal, 81, 129-137.
[64]Calise, G. J., & Saigal, A. (2017, November). Anisotropy and Failure in Octahedral Lattice Structure Parts Fabricated Using the FDM Technology. In ASME 2017 International Mechanical Engineering Congress and Exposition (pp. V014T11A025-V014T11A025). American Society of Mechanical Engineers.
[65]Verdejo, R., & Mills, N. (2002). Performance of EVA foam in running shoes. The engineering of sport, 4, 580-587.
[66]Wang, L., Hong, Y., & Li, J. X. (2012). Durability of running shoes with ethylene vinyl acetate or polyurethane midsoles. Journal of sports sciences, 30(16), 1787-1792.
[67]Jiang, X., Zhao, J., & Jiang, X. (2011). Correlation between hardness and elastic moduli of the covalent crystals. Computational Materials Science, 50(7), 2287-2290.
[68]McKay, M. J., Baldwin, J. N., Ferreira, P., Simic, M., Vanicek, N., Wojciechowski, E., ... & 1000 Norms Project Consortium. (2017). Spatiotemporal and plantar pressure patterns of 1000 healthy individuals aged 3–101 years. Gait & posture, 58, 78-87.
[69]Rethnam, U., & Makwana, N. (2011). Are old running shoes detrimental to your feet? A pedobarographic study. BMC research notes, 4(1), 307.
[70]Patrick, K., & Donovan, L. (2018). Test–retest reliability of the Tekscan® F-Scan® 7 in-shoe plantar pressure system during treadmill walking in healthy recreationally active individuals. Sports biomechanics, 17(1), 83-97.
[71]Bonner, D., Pellegrini, S., Rudolph, M., & Hilberer, M. (2016). Sensitive Payload Shock Absorber.