跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 06:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭宇晟
研究生(外文):ZHENG, YU-CHENG
論文名稱:雷射燒結鏤空結構應用於鞋中底之生物力學評估-動態有限元素分析
論文名稱(外文):Biomechanical Evaluation on Selective Laser Sintering Cellular Structures Applied to the Shoe Midsole – a Dynamic Finite Element Analysis
指導教授:陳文斌陳文斌引用關係
指導教授(外文):CHEN, WENG-PIN
口試委員:陳文斌鄧復旦呂東武汪家昌林師誠
口試委員(外文):CHEN, WENG-PINTang, Fuk-TanLu, Tung-WuWANG, JIA-CHANGLin, Shih-Cherng
口試日期:2019-07-15
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機械工程系機電整合碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:85
中文關鍵詞:積層製造鏤空結構晶格拉脹結構鞋中底動態有限元素分析鞋具生物力學
外文關鍵詞:Additive manufactureCellular structureAuxetic structureShoe midsoleDynamic finite element analysisFootwear biomechanics
相關次數:
  • 被引用被引用:2
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
隨著積層製造技術之進步,許多國際知名鞋廠相繼研發新式積層製造鞋,其特色是鞋具之鞋中底為鏤空結構設計,以期讓鞋具於步態期間之足跟著地及中立期擁有較好的生物力學表現。過去文獻中提出具有負泊松比特性(晶格拉脹)之鏤空結構擁有較佳的抗壓縮特性及較高的斷裂韌性,可作為緩衝吸震結構之應用,因此本研究目的是將具有晶格拉脹特性鏤空結構導入鞋中底設計,並使用動態有限元素分析評估此鏤空結構對步態週期時足部生物力學之影響。
本研究設計三種晶格拉脹鏤空結構,以不同排列方式建構分別為 A、B和C類型結構,其孔隙率分別為59 %、68 %和70 %,首先使用Hypermesh軟體分別建構鏤空結構之實體元素和樑元素有限元素模型,接著以LS-DYNA軟體進行結構壓縮負載有限元素分析。鏤空結構和材料試塊使用TPU材料以雷射粉末燒結3D列印機台製造,並參照ASTM D3575-14規範進行準靜態壓縮試驗,試驗結果與兩種元素之分析值進行比較。另外,參照ASTM F1976-13規範進行鏤空結構吸震試驗。最後,建構樑元素鏤空結構墊模型與本研究室於過往建構之三維足部有限元素模型結合,以動態有限元素分析方式評估鏤空結構對足部生物力學影響。
由鏤空結構之準靜態壓縮結果,比較實驗值、實體元素和樑元素分析值之力量-位移曲線,由皮爾森相關係數計算得知其值皆大於0.80,代表結構之力學特性變化趨勢於三者間擁有高度關聯性。由吸震試驗結果得知 A、B和C類型結構於70 mm之衝程距離可吸收能量值分別為0.338 J、0.485 J和0.735 J ,因此 C類型具最佳吸震能力。由動態分析中得知足部踩踏 A、B和C類型鏤空結構墊其跟骨下方處峰值足底壓力分別為456.48 kPa、417.72 kPa和400.30 kPa。
本研究證實樑元素可有效取代實體元素進行鏤空結構分析並有效減少分析時間,由分析結果中發現C類型結構之吸震能力和足底減壓效益最佳,也觀察到 B類型結構於步態週期擁有最佳的應力分佈行為。本研究完成以樑元素之方式建構鏤空結構並使用動態有限元素分析評估足部之生物力學特性,本研究能提供後續鏤空結構鞋中底設計的參考依據。

As the advancement of additive manufacturing technology, many internationally renowned shoe brands have developed new footwear by utilizing additive manufacturing technology. The footwear made by additive manufacturing technology is featured with cellular midsole structure. It is also aimed to have better biomechanical performance during heel strike and midstance phases of gait. It has been reported in literature that the cellular structure with characteristic of negative Poisson’s ratio (auxetic structure) has better capabiliity to withstand compressive load and higher fracture toughness. Such structure may be a good candidate for shock absorption applications. The purpose of this study was to design different auxetic structures and to apply them for shoe midsole design. Dynamic finite element (FE) analysis was used to investigate the biomechanical effects of such cellular midsole structures on the foot during gait cycle.
Three types of cellular, auxetic structures were designed and named: Type A, B and C structures with porosity ratios of 59%, 68% and 70% respectively. The FE models of the cellular structures were generated with both solid and beam elements by using HyperMesh pre-processing software. Then, LS-DYNA FE software was used to analyze the cellular structures under compression loading. The test specimens of the cellular structures were fabricated with TPU (Thermoplastic polyurethane) material by using a selective laser sintering 3D printer. The compressive mechanical properties of the cellular structure specimens were obtained by following the ASTM D3575-14 standards and were compared with the finite element analysis results. The shock absorption test of the cellular structures were also conducted with ASTM F1976-13 standard. In order to investigate the biomechanical effects of the cellular structure when used as shoe midsole, three different cellular pads were created using beam elements and then combined with a 3D finite element foot model for dynamic FE analysis during gait loadings.
From the compression tests, the force-displacement results from the mechanical tests and FE analyses were compared. Pearson's correlation ratios in between the FE analysis results by using solid elements and beam elements were calculated for each of the three types of cellular structures. The correlation ratios showed that the mechanical properties were highly correlated among these three types and were all greater than 0.80. The energy absorption test values of Type A, B and C structures were 0.338 J, 0.485 J and 0.735 J, respectively. Therefore, Type C structure has the best shock absorption capability. The dynamic finite element analysis results showed that the peak plantar pressure during gait on the calcaneus area were 456.48 kPa, 417.72 kPa and 400.30 kPa, respectively.
In the cellular structures analysis, it was demonstrated that the beam element model could effectively replace the solid element model and greatly reduce the analysis time. It was found that the Type C structure had the best shock absorption and plantar pressure reduction capabilities, the Type B structure had the best effect of stress distribution on the cellular structure during the dynamic gait cycle. In the present study, the complex cellular structures can be reasonably represented by simplified beam elements for finite element analysis. Also, the biomechanical characteristics of the foot using dynamic finite element analysis can be evaluated as well. This study can provide a useful reference for future studies on cellular structured midsole designs.

摘 要 i
ABSTRACT iii
誌謝 vi
目 錄 vii
表目錄 x
圖目錄 xi
第1章 緒論 1
1.1 前言 1
1.2 研究背景與文獻回顧 2
1.2.1 足部骨骼構造及功能 2
1.2.2 足部步態之週期及地面反作用力介紹 3
1.2.3 步行與跑步之步態行為 5
1.2.4 鞋具之足底壓力分佈及減壓機制 7
1.2.5 鞋具之鞋中底設計 11
1.2.6 積層製造技術 13
1.2.7 晶格拉脹性結構之負泊松比效應及應用 15
1.2.8 有限元素分析 17
1.2.9 文獻總結 22
1.3 研究目的 22
第2章 材料與方法 23
2.1 研究流程 23
2.2 有限元素模型 24
2.2.1 鏤空結構有限元素模型 24
2.2.2 足部有限元素模型 27
2.2.3 足部與鏤空結構結合之有限元素模型 28
2.3 材料及鏤空結構之力學試驗 30
2.3.1 材料試驗 30
2.3.2 鏤空結構準靜態壓縮試驗 33
2.3.3 鏤空結構吸震試驗 35
2.4 鏤空結構準靜態壓縮分析 37
2.4.1 邊界條件設定 37
2.4.2 材料參數設定 37
2.4.3 接觸條件設定 38
2.4.4 Beam元素型態設定 38
2.5 足部動態有限元素分析 40
2.5.1 邊界條件設定 40
2.5.2 材料參數設定 43
2.5.3 接觸條件設定 43
2.5.4 Beam元素型態設定 44
2.6 資料分析及驗證 45
2.6.1 鏤空結構之壓縮分析驗證和資料擷取 45
2.6.2 足部動態有限元素分析驗證和資料擷取 45
第3章 結果 46
3.1 鏤空結構之壓縮結果及分析驗證 46
3.2 鏤空結構吸震試驗 55
3.3 足部動態有限元素分析 57
3.3.1 足部動態分析之地面反作用力驗證 57
3.3.2 足底壓力分析結果 59
3.3.3 鏤空結構墊之應力分佈結果 61
第4章 討論 63
4.1 鏤空結構之材料和製程方法影響 63
4.2 鏤空結構之力學特性 65
4.2.1 鏤空結構準靜態壓縮 66
4.2.2 鏤空結構吸震能力 67
4.3 樑元素代替實體元素之可行性 68
4.4 鏤空結構設計方式對足底壓力影響 69
4.5 鏤空結構鞋中底與傳統跑鞋中底之差異 70
4.5.1 鏤空結構鞋中底與市售鞋中底之吸震效益差異 70
4.5.2 鏤空結構鞋中底與市售鞋中底之足底減壓差異 72
4.6 鏤空結構鞋中底設計方式對吸震和足底減壓效益提升 73
4.7 研究限制 75
第5章 結論 76
第6章 未來展望 77
參考文獻 78


[1]Yuan, S., Shen, F., Bai, J., Chua, C. K., Wei, J., & Zhou, K. (2017). 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization. Materials & Design, 120, 317-327.
[2]Limmahakhun, S., Oloyede, A., Sitthiseripratip, K., Xiao, Y., & Yan, C. (2017). 3D-printed cellular structures for bone biomimetic implants. Additive Manufacturing, 15, 93-101.
[3]Nasim, M. S., & Etemadi, E. (2018). Three dimensional modeling of warp and woof periodic auxetic cellular structure. International Journal of Mechanical Sciences, 136, 475-481.
[4]Yang, C., Vora, H. D., & Chang, Y. (2018). Behavior of auxetic structures under compression and impact forces. Smart Materials and Structures, 27(2), 025012.
[5]Correa, D. M., Seepersad, C. C., & Haberman, M. R. (2015). Mechanical design of negative stiffness honeycomb materials. Integrating Materials and Manufacturing Innovation, 4(1), 10.
[6]Park, H., Yu, R., & Lee, J. (2018, November). Multi-segment foot modeling for human animation. In Proceedings of the 11th Annual International Conference on Motion, Interaction, and Games (p. 16). ACM.
[7]Moore, K. L., Dalley, A. F., & Agur, A. M. (2013). Clinically oriented anatomy. Lippincott Williams & Wilkins.
[8]Mohammed, S., Same, A., Oukhellou, L., Kong, K., Huo, W., & Amirat, Y. (2016). Recognition of gait cycle phases using wearable sensors. Robotics and Autonomous Systems, 75, 50-59.
[9]Deng, M., Wang, C., & Zheng, T. (2018). Individual identification using a gait dynamics graph. Pattern Recognition.
[10]Shetty, N., & Bendall, S. (2011). (i) Understanding the gait cycle, as it relates to the foot. Orthopaedics and Trauma, 25(4), 236-240.
[11]Brown, T. N., O’Donovan, M., Hasselquist, L., Corner, B. D., & Schiffman, J. M. (2014). Body borne loads impact walk-to-run and running biomechanics. Gait & posture, 40(1), 237-242.
[12]Simpson, K. M., Munro, B. J., & Steele, J. R. (2012). Effects of prolonged load carriage on ground reaction forces, lower limb kinematics and spatio-temporal parameters in female recreational hikers. Ergonomics, 55(3), 316-326.
[13]Tajima, T., Tateuchi, H., Koyama, Y., Ikezoe, T., & Ichihashi, N. (2018). Gait strategies to reduce the dynamic joint load in the lower limbs during a loading response in young healthy adults. Human movement science, 58, 260-267.
[14]Pérez-Morcillo, A., Gómez-Bernal, A., Gil-Guillen, V. F., Alfaro-Santafé, J., Alfaro-Santafé, J. V., Quesada, J. A., ... & Carratalá-Munuera, C. (2019). Association between the Foot Posture Index and running related injuries: A case-control study. Clinical Biomechanics, 61, 217-221.
[15]Zhang, X., Delabastita, T., Lissens, J., De Beenhouwer, F., & Vanwanseele, B. (2018). The morphology of foot soft tissues is associated with running shoe type in healthy recreational runners. Journal of science and medicine in sport, 21(7), 686-690.
[16]Shaulian, H., Solomonow-Avnon, D., Herman, A., Rozen, N., Haim, A., & Wolf, A. (2018). The effect of center of pressure alteration on the ground reaction force during gait: A statistical model. Gait & posture, 66, 107-113.
[17]Keller, T. S., Weisberger, A. M., Ray, J. L., Hasan, S. S., Shiavi, R. G., & Spengler, D. M. (1996). Relationship between vertical ground reaction force and speed during walking, slow jogging, and running. Clinical biomechanics, 11(5), 253-259.
[18]Daoud, A. I., Geissler, G. J., Wang, F., Saretsky, J., Daoud, Y. A., & Lieberman, D. E. (2012). Foot strike and injury rates in endurance runners: a retrospective study. Med Sci Sports Exerc, 44(7), 1325-34.
[19]Zulkifli, S. S., & Ping, L. W. (2018). A state-of-the-art review of foot pressure. Foot and Ankle Surgery.
[20]Telfer, S., & Bigham, J. (2018). The Influence of Population Characteristics and Measurement System on Barefoot Plantar Pressures: A Systematic Review and Meta-Regression Analysis. Gait & posture.
[21]Razak, A., Hadi, A., Zayegh, A., Begg, R. K., & Wahab, Y. (2012). Foot plantar pressure measurement system: A review. Sensors, 12(7), 9884-9912.
[22]Keijsers, N. L. W., Stolwijk, N. M., & Pataky, T. C. (2010). Linear dependence of peak, mean, and pressure–time integral values in plantar pressure images. Gait & posture, 31(1), 140-142.
[23]Branthwaite, H., & Chockalingam, N. (2019). Everyday footwear: an overview of what we know and what we should know on ill-fitting footwear and associated pain and pathology. The Foot.
[24]Williams, J. T. (Ed.). (2017). Waterproof and Water Repellent Textiles and Clothing. Woodhead Publishing.
[25]Bus, S. A. (2012). Priorities in offloading the diabetic foot. Diabetes/metabolism research and reviews, 28, 54-59.
[26]Leber, C., & Evanski, P. M. (1986). A comparison of shoe insole materials in plantar pressure relief. Prosthetics and Orthotics International, 10(3), 135-138.
[27]Zhang, X., Li, B., Liang, K., Wan, Q., & Vanwanseele, B. (2016). An optimized design of in-shoe heel lifts reduces plantar pressure of healthy males. Gait & posture, 47, 43-47.
[28]Caravaggi, P., Giangrande, A., Lullini, G., Padula, G., Berti, L., & Leardini, A. (2016). In shoe pressure measurements during different motor tasks while wearing safety shoes: The effect of custom made insoles vs. prefabricated and off-the-shelf. Gait & posture, 50, 232-238.
[29]Chatzistergos, P. E., Naemi, R., Healy, A., Gerth, P., & Chockalingam, N. (2017). Subject Specific Optimisation of the Stiffness of Footwear Material for Maximum Plantar Pressure Reduction. Annals of biomedical engineering, 45(8), 1929-1940
[30]Mueller, M. J. (1999). Application of plantar pressure assessment in footwear and insert design. Journal of orthopaedic & sports physical therapy, 29(12), 747-755.
[31]Ly, Q. H., Alaoui, A., Erlicher, S., & Baly, L. (2010). Towards a footwear design tool: Influence of shoe midsole properties and ground stiffness on the impact force during running. Journal of biomechanics, 43(2), 310-317.
[32]Milani, T. L., Hennig, E. M., & Lafortune, M. A. (1997). Perceptual and biomechanical variables for running in identical shoe constructions with varying midsole hardness. Clinical biomechanics, 12(5), 294-300.
[33]Stewart, S., Dalbeth, N., McNair, P., Parmar, P., Gow, P., & Rome, K. (2014). The effect of good and poor walking shoe characteristics on plantar pressure and gait in people with gout. Clinical Biomechanics, 29(10), 1158-1163.
[34]Dinato, R. C., Ribeiro, A. P., Butugan, M. K., Pereira, I. L., Onodera, A. N., & Sacco, I. C. (2015). Biomechanical variables and perception of comfort in running shoes with different cushioning technologies. Journal of Science and Medicine in Sport, 18(1), 93-97.
[35]Cook, S. D., Kester, M. A., & Brunet, M. E. (1985). Shock absorption characteristics of running shoes. The American journal of sports medicine, 13(4), 248-253.
[36]Oh, K., & Park, S. (2017). The bending stiffness of shoes is beneficial to running energetics if it does not disturb the natural MTP joint flexion. Journal of biomechanics, 53, 127-135.
[37]Flores, N., Delattre, N., Berton, E., & Rao, G. (2018). Does an increase in energy return and/or longitudinal bending stiffness shoe features reduce the energetic cost of running?. European journal of applied physiology, 1-11.
[38]Diegel, O. (2014). Additive Manufacturing: An Overview.
[39]Roschli, A., Gaul, K. T., Boulger, A. M., Post, B. K., Chesser, P. C., Love, L. J., ... & Borish, M. (2019). Designing for Big Area Additive Manufacturing. Additive Manufacturing, 25, 275-285.
[40]Davia-Aracil, M., Hinojo-Pérez, J. J., Jimeno-Morenilla, A., & Mora-Mora, H. (2018). 3D printing of functional anatomical insoles. Computers in Industry, 95, 38-53.
[41]“ASTM 52910:2018(E) Additive manufacturing — Design — Requirements, guidelines and recommendations. ”
[42]Liu, Y., & Hu, H. (2010). A review on auxetic structures and polymeric materials. Scientific Research and Essays, 5(10), 1052-1063.
[43]Verdejo, R., & Mills, N. J. (2004). Heel–shoe interactions and the durability of EVA foam running-shoe midsoles. Journal of biomechanics, 37(9), 1379-1386.
[44]Li, Y., Leong, K. F., & Gu, Y. (2018). Construction and finite element analysis of a coupled finite element model of foot and barefoot running footwear. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 1754337118803540.
[45]Calise, G. J., & Saigal, A. (2018, November). Mechanical Behavior of Octahedral and Octet Structures Produced From CLIP Technology. In ASME 2018 International Mechanical Engineering Congress and Exposition (pp. V002T02A063-V002T02A063). American Society of Mechanical Engineers.
[46]Egan, P. F., Bauer, I., Shea, K., & Ferguson, S. J. (2019). Mechanics of three-dimensional printed lattices for biomedical devices. Journal of Mechanical Design, 141(3), 031703.
[47]Lin, S. C., Chen, C. P. C., Tang, S. F. T., Chen, C. W., Wang, J. J., Hsu, C. C., ... & Chen, W. P. (2014). Stress distribution within the plantar aponeurosis during walking—a dynamic finite element analysis. Journal of Mechanics in Medicine and Biology, 14(04), 1450053.
[48]林一嘉, "前端弧形鞋底設計對於步態站立期間足底筋膜負載之影響," 碩士論文,國立臺北科技大學製造科技研究所,臺北,2013.
[49]黃司辰, "不同蹠骨墊設計與擺放位置對於足底壓力分佈之影響," 碩士論文, 國立臺北科技大學機電整合研究所, 臺北, 2014.
[50]"ASTM D3575-14 Standard Test Methods for Flexible Cellular Materials Made From Olefin Polymers".
[51]"ASTM D3574-17 Standard Test Methods for Flexible Cellular Materials - Slab, Bonded, and Molded Urethane Foams ".
[52]" ASTM F1976-13 Standard Test Method for Impact Attenuation of Athletic Shoe Cushioning Systems and Materials "
[53]Stefanyshyn, D. J., & Nigg, B. M. (2003). Energy and performance aspects in sports surfaces. Sport Surfaces–Biomechanics, Injuries, Performance, Testing and Installation, Editors. BM Nigg, GK Cole and DJ Stefanyshyn, University of Calgary, Calgary, Canada, 31-46.
[54]Schwanitz, S., Möser, S., & Odenwald, S. (2010). Comparison of test methods to quantify shock attenuating properties of athletic footwear. Procedia Engineering, 2(2), 2805-2810.
[55]Zhang, L., Yao, X., Zang, S., & Gu, Y. (2015). Temperature‐and strain rate‐dependent constitutive modeling of the large deformation behavior of a transparent polyurethane interlayer. Polymer Engineering & Science, 55(8), 1864-1872.
[56]Hallquist, J. O. (2007). LS-DYNA keyword user’s manual. Livermore Software Technology Corporation, 970, 299-800.
[57]Zmetra, K. (2015). Repair of Corrosion Damaged Steel Bridge Girder Ends by Encasement in Ultra-High Strength Concrete (Doctoral dissertation, University of Connecticut).
[58]Leardini, A., Benedetti, M. G., Berti, L., Bettinelli, D., Nativo, R., & Giannini, S. (2007). Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait & posture, 25(3), 453-462.
[59]Wu, G., & Cavanagh, P. R. (1995). ISB recommendations for standardization in the reporting of kinematic data. Journal of biomechanics, 28(10), 1257-1261.
[60]Erdemir, A., Saucerman, J. J., Lemmon, D., Loppnow, B., Turso, B., Ulbrecht, J. S., & Cavanagh, P. R. (2005). Local plantar pressure relief in therapeutic footwear: design guidelines from finite element models. Journal of biomechanics, 38(9), 1798-1806.
[61]Bi, H., Ren, Z., Guo, R., Xu, M., & Song, Y. (2018). Fabrication of flexible wood flour/thermoplastic polyurethane elastomer composites using fused deposition molding. Industrial crops and products, 122, 76-84.
[62]Chen, Q., Mangadlao, J. D., Wallat, J., De Leon, A., Pokorski, J. K., & Advincula, R. C. (2017). 3D printing biocompatible polyurethane/poly (lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS applied materials & interfaces, 9(4), 4015-4023.
[63]Dang, L. N., Le Hoang, S., Malin, M., Weisser, J., Walter, T., Schnabelrauch, M., & Seppälä, J. (2016). Synthesis and characterization of castor oil-segmented thermoplastic polyurethane with controlled mechanical properties. European Polymer Journal, 81, 129-137.
[64]Calise, G. J., & Saigal, A. (2017, November). Anisotropy and Failure in Octahedral Lattice Structure Parts Fabricated Using the FDM Technology. In ASME 2017 International Mechanical Engineering Congress and Exposition (pp. V014T11A025-V014T11A025). American Society of Mechanical Engineers.
[65]Verdejo, R., & Mills, N. (2002). Performance of EVA foam in running shoes. The engineering of sport, 4, 580-587.
[66]Wang, L., Hong, Y., & Li, J. X. (2012). Durability of running shoes with ethylene vinyl acetate or polyurethane midsoles. Journal of sports sciences, 30(16), 1787-1792.
[67]Jiang, X., Zhao, J., & Jiang, X. (2011). Correlation between hardness and elastic moduli of the covalent crystals. Computational Materials Science, 50(7), 2287-2290.
[68]McKay, M. J., Baldwin, J. N., Ferreira, P., Simic, M., Vanicek, N., Wojciechowski, E., ... & 1000 Norms Project Consortium. (2017). Spatiotemporal and plantar pressure patterns of 1000 healthy individuals aged 3–101 years. Gait & posture, 58, 78-87.
[69]Rethnam, U., & Makwana, N. (2011). Are old running shoes detrimental to your feet? A pedobarographic study. BMC research notes, 4(1), 307.
[70]Patrick, K., & Donovan, L. (2018). Test–retest reliability of the Tekscan® F-Scan® 7 in-shoe plantar pressure system during treadmill walking in healthy recreationally active individuals. Sports biomechanics, 17(1), 83-97.
[71]Bonner, D., Pellegrini, S., Rudolph, M., & Hilberer, M. (2016). Sensitive Payload Shock Absorber.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊