跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/10/07 21:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林鴈峯
研究生(外文):LIN, YEN-FENG
論文名稱:樹豆根酒精萃取物對大鼠的降血糖能力之評估
論文名稱(外文):Hypoglycemic Effects of Ethanol Extracts from Cajanus cajan (L.) Millsp. Roots in Rats
指導教授:宋祖瑩宋祖瑩引用關係
指導教授(外文):SONG, TUZZ-YING
口試委員:宋祖瑩蔡明勳廖俊旺
口試委員(外文):SONG, TUZZ-YINGTSAI, MING-HSUNLIAO,JIUNN-WANG
口試日期:2016-07-27
學位類別:碩士
校院名稱:大葉大學
系所名稱:生物產業科技學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:67
中文關鍵詞:樹豆根
外文關鍵詞:Cajanus cajan (L.) Millsp.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1066
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
糖尿病是由於胰島素分泌不足或其無法作用所形成的內分泌疾病,其形成原因複雜,因此目前無切確的成因。近年由於飲食精緻化,導致糖尿病患於全球人口有逐年攀升的趨勢,並且有年輕化的現象。有研究指出,糖尿病的形成可能是由於基因與生活形態所造成,如久坐少動的習慣及能量過剩的情況,在這些因子交互作用之下便造成胰島素阻抗現象,如無及時改善,最終將形成第二型糖尿病。研究樹豆根酒精萃取物餵食正常大鼠與餵食MGO導致胰島素阻抗的大鼠進行比較。研究針對樹豆根酒萃物降血糖的功能評估,在大鼠餵食樹豆根酒萃物後跟只有傷害組是否有顯著性的差異。設計實驗為餵食大鼠甲基乙二醛劑量 (MGO:500 mg/kg bw)來誘導胰島素阻抗,進行84天。葡萄糖耐量試驗(oral glucose tolerance test,OGTT) 進行動物葡萄糖耐量試驗OGTT方法是將大鼠禁食 12 h後,測其空腹血糖值,在將老鼠以管餵方式灌食葡萄糖水( 2g/kg bw)及樣品後,測定 30、60、90及120分鐘血糖之變化。胰島素耐量試驗(insulin tolerance,ITT)試驗為將大鼠禁食4小時後,測定空腹血糖,再以腹腔注射方式給予胰島素(0.5 U/kg bw),然後測定30、60、90及120分鐘時血糖之變化,以探討動物對胰島素之敏感性。在ITT試驗,傷害組很明顯的對胰島素已經不敏感了因為給予MGO已破壞胰臟B細胞,所以血糖起伏幅度很平緩,代表給予MGO餵食是有糖尿病的跡象了。結果顯示已餵食樹豆根酒萃物不同劑量下,高劑量組下降的最為顯著,高劑量下降最多效果最好,而GOT、GPT、LDL、BUN、CHOL、TG等數值,跟以上跟傷害組及正控制組比較,均有顯著性的下降。
Cajanus cajan (L.) Millsp. root cooked with the ribs can cure diabetes is recognized an aboriginal traditional therapies. Previous studies known after a series of separation and purification from ethanol extract of Cajanus cajan root was obtained Betulinic acid, biochanin A, 5,2'-dihydroxy-7,4'-dimethoxyisoflavanone (cajanol), genistein, 2'-hydroxygenistein and other differences flavonoids. Many studies have confirmed the above components such as: genistein has excellent antioxidant capacity and the ability to inhibit the decomposition of carbohydrates. We investigated whether ethanol extracts of Cajanus cajan roots (EECR) could protect against methylglyoxal (MGO; 500 mg/kg bw)-induced insulin resistance (IR) in male Wistar rats between days 1 to 83. Rats treated with MGO were used to examine the hypoglycemic effects of EECR on IR. The rats were divided into six groups and orally supplemented with MGO except for group 1 (normal controls). Group 3 was orally supplemented with Metformin (MET;10 mg/kg bw), group 4 with EECR-L (10 mg/kg bw), group 5 with HIP EECR-M (50 mg/kg bw), and group 6 with EECR-H (100 mg/kg bw). MET and EECR were provided daily between days 31 to 83 in rats. Oral glucose tolerance (OGTT) and insulin tolerance (ITT)tests were carried out on days 77 and 78, respectively. The results indicated that body weights, water and food intake for each group revealed no significant difference. In insulin tolerance tests (ITT), serum glucose levels of MGO-treated group was slightly change (approximately 100 mg/ml) (no insulin sensitivity) after intraperitoneal injection of insulin, while serum glucose level was significantly decreased (P <0.05) in EECR-treated rats, the effects were comparable MET groups (MET is a known hypoglycemic drugs). Blood sugar and glycosylated hemoglobin (HbA1c) as well as serum insulin, glycation end products (AGEs) of MGO-treated groups were higher than that of blank groups. EECR significantly decreased those hyperglycemic index induced by MGO. In addition, EECR also dose dependently decreased serum biochemical index (such as, GOT, GPT, CHOL, LDL, TG), TBARS content and increased SOD activity. MGO can induce IR (increase the insulin and blood sugar level) in rats, whereas EECR could inhibit AGEs formation by reducing oxidative stress, so as to improve IR and lowering blood sugar. Thus, EECR has the potential to become a useful hypoglycemic agent for diabetic mellitus.
封面內頁
簽名頁
中文摘要 iii
英文摘要 v
誌謝 viiiii
目錄 viiiiii
圖目錄 xi
表目錄 xii
縮寫表 xiii
1. 緒論 1
2. 文獻回顧 2
2.1 樹豆之簡介 2
2.1.1樹豆各部位的生理活性 5
2.1.2樹豆根的生理活性與活性成分 6
2.2 糖尿病 7
2.2.1糖尿病的分類 7
2.2.2糖尿病的診斷 9
2.2.3糖尿病的併發症 10
2.2.4糖尿病的治療 10
3. 研究架構與目錄....................................................................................10
4.材料與方法 14
4.1實驗材料 14
4.1.1實驗藥品 14
4.1.2實驗儀器與設備 15
4.2實驗方法 14
4.2.1樣品製備 17
4.2.2降血糖評估試驗 17
4.2.2.1 葡萄糖耐受性試驗 (OGTT) 17
4.2.2.2 胰島素耐受性試驗 (ITT) 17
4.2.3 八十四天餵食樹豆根試驗 18
4.2.3.1 飼養情形 18
4.2.3.2 動物犧牲 18
4.2.3.3 檢驗項目 18
4.2.4 脂質過氧化試驗 (TBARS) 21
4.2.5 超氧化物歧化酶活性試驗 (SOD) 22
4.2.6 殼胱甘肽 (GSH/GSSG assay) 22
4.2.7 胰島素(Insulin) 23
4.2.8 統計分析 23
5.1結果與討論 24
5.1.1 EECR對大鼠之葡萄糖耐受性試驗的影響 26
5.1.2 EECR對大鼠之胰島素耐受性試驗的影響 29
5.2 樹豆根酒精萃取物毒性餵食試驗 29
5.2.1 體重成長 25
5.2.2 尿液生化 32
5.2.3 臟器重量分析 33
5.2.4 血液生化分析 35
5.3 餵食EECR對大鼠肝臟之脂質過氧化物含量影響 46
5.4 餵食EECR對大鼠肝臟之超氧化物歧化酶含量影響 46
5.5 餵食EECR對大鼠肝臟之麩胱甘肽含量影響 46
5.6 餵食EECR對大鼠血清胰島素之含量影響 46
6.結論 47
參考文獻 48



1.江瑞拱。1999。多用途的資源植物~樹豆(上)。農業世界雜 188:101-103。
2.姜金龍。1996。樹豆。少量多樣化雜糧作物栽培手冊.台灣省政府農林廳。
3.陳振義。2011。樹豆新品種介紹。台東區農技報導 8: 1-3。
4.趙麗惠。2005。樹豆種子與細葉金午時花全草化學成分及生物活性之研究。屏東科技大學生物科技研究所碩士論文。屏東,臺灣。
5.American Diabetes Association. 2007. Diagnosis and classification of diabetes mellitus. Diabetes Care. 30: S42-S47.
6.Aabgeena, N., Rizwan, H.K., Hirendra, V., Mohammad, A. 2001. Purification of Cajanus cajan root lectin and its interaction with rhizobial lipopolysaccharide as studied by different spectroscopic techniques. Archives of Biochemistry and Biophysics. 396 :99-105.
7.Abbiw, D.K. 1990. Useful Plants of Ghana. Richmond Intermediate Technology Publications and Royal Botanic Gardens, Kew, London, UK.
8.Adamis AP, Miller JW, Bernal MT, D’Amico DJ, Folkman J, Yeo TK, et al.1994 Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol. 118 :445-50
9.Amalraj T, Ignacimuthu S. 1998.Hypoglycemic activity of Cajanus cajan (seeds) in mice. Indian J Exp Biol.36(10) :1032-3.

10.Age-Related Eye Disease Study 2 Research Group. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial.
11.Akojie FO, Fung LW. 1992. Antisickling activity of hydroxybenzoic acids in Cajanus cajan. Planta Med. 58(4) :317-20.
12.Ankrah NA, Appiah-Opong R. 1999. Toxicity of low levels of methylglyoxal: depletion of blood glutathione and adverse effect on glucose tolerance in mice. Toxicol Lett. 109(1-2) :61-7.
13.Bogardus C, Lillioja S, Mott DM, Hollenbeck C, Reaven GM. 1985. Relationship between degree of obesity and in vivo insulin action in man. Am. J. Physiol. 248 :e286-91.
14.Brownlee M. 2001. Biochemistry and molecular cell biology of diabetic complications. Nature. 414 :813-820.
15.Brownlee M. 1991. Glycosylation products as toxic mediators of diabetic complications. Annu Rev Med. 42 :159-66.
16.Cheng, A.Y., and Fantus, I.G. 2005. Oral antihyperglycemic therapy for type 2 diabetes mellitus. Cmaj. 172 :213-226.
17.Dai FJ, Hsu WH, Huang JJ, Wu SC. 2013. Effect of pigeon pea (Cajanus cajan L.) on high-fat diet-induced hypercholesterolemia in hamsters. Food Chem Toxicol. 53 :384-91.
18.Deeney JT, Prentki M, Corkey BE. 2000. Metabolic control of beta-cell function. Semin Cell Dev Biol. 11267-75.
19.Dhar A, Dhar I, Jiang B, Desai KM, Wu L. 2011. Chronic methylglyoxal infusion by minipump causes pancreatic beta-cell dysfunction and induces type 2 diabetes in Sprague-Dawley rats. Diabetes. 60 :899-908.
20.Dieter BP, Vella CA. A. 2013. proposed mechanism for exercise attenuated methylglyoxal accumulation: activation of the ARE-Nrf pathway and increased glutathione biosynthesis. Med Hypotheses. 81(5) :813-5.
21.Duke, J.A., Vasquez, R. 1994. Amazonian Ethnobotanical Dictionary. CRC Press, Boca Raton, FL, USA.
22.Duker-Eshun G, Jaroszewski JW, Asomaning WA, Oppong-Boachie F, Brøgger Christensen S. 2004. Antiplasmodial constituents of Cajanus cajan. Phytother Res. 18(2) :128-30.
23.Duker-Eshun, G., J. A. Jaroszewski, W. A. Asomaning, F.Oppong-Goachie and S. B. Christensen. 2004. Antiplasmodial constituents of Cajanus cajan. Phytother. Res. 18 :128-30.
24.Fiory F, Lombardi A, Miele C, Giudicelli J, Beguinot F, Van Obberghen E. 2011. Methylglyoxal impairs insulin signalling and insulin action on glucose-induced insulin secretion in the pancreatic beta cell line INS-1E. Diabetologia. 54(11) :2941-52.
25.Funatsu H, Yamashita H, Noma H, Mimura T, Nakamura S, Sakata K, et al. 2005. Aqueous humor levels of cytokines are related to vitreous levels and progression of diabetic retinopathy in diabetic patients. Graefes Arch Clin Exp Ophthalmol. 243 :3e8.
26.Gho, Y. S., Kleinman H.K. and Sosne, G. 1999. Angiogenic activity of human soluble intercellular adhesion molecule-1. Cancer Res. 59 :5128-32.
27.Gong X and Rubin LP Role. 2015. of macular xanthophylls in prevention of common neovascular retinopathies: retinopathy of prematurity and diabetic retinopathy. Arch Biochem Biophys. Apr 15. 572 :40-8.
28.Guha M, Bai W, Nadler JL, Natarajan R. 2000. Molecular mechanisms of tumor necrosis factor alpha gene expression in monocytic cells via hyperglycemia-induced oxidant stress-dependent and -independent pathways. J. Biol. Chem. 275 :17728-39.
29.Guo Q, Mori T, Jiang Y, Hu C, Osaki Y, Yoneki Y. 2009. Methylglyoxal contributes to the development of insulin resistance and salt sensitivity in Sprague-Dawley rats. J Hypertens. 27(8) :1664-71.
30.Halliwell, B. and Chirico, S. 1993. Lipid peroxidation: it mechanism, measurement and significance. Am. J. Clin. Nutr. 57 :715-750.
31.Halliwell, B. and Gutteridge, J. M. C. 1999. Free Radicals in Biology and Medicine. Oxford University Press, New York, pp. 746-549.
32.Harish, K., Bajpai, VK., Dubey, RC., Maheshwari, D.K., Sun Chul Kang. 2010. Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Protection. 29 :591-598.
33.Holick MF. Vitamin D: A millenium perspective. J. 2003. Cell Biochem. 88 :296-307.
34.Ingham JL. 1976. Induced isoflavonoids from fungus-infected stems of pigeon pea (Cajanus cajan). Z Naturforsch C. 31(9-10) :504-8.
35.Iwu, M. M., A. O. Igboko, H. Onwubiko and U. E. Ndu. 1988. Effect of cajaminose from Cajanus cajan on gelation and oxygen affinity of sickle cell haemoglobin. J. Ethnopharmacol. 23 :99-104.
36.Kao MT. 1990. Popular herbal remedies of Taiwan (2), SMC Publishing Inc. p66.
37.Kenjiro T, Yuji M, Kouta T, Tomoko M. 2006. Inhibition of α-Glucosidase and α Amylase by Flavonoids. J Nutr Sci Vitaminol. 52 :149-53. Tokyo.
38.Kong, Y., Fu, Y.J., Zu, Y.G., Chang, F.R., Chen, Y.H., Liu, X.L. 2010. Cajanuslactone, a new coumarin with anti-bacterial activity from pigeon pea [Cajanus cajan (L.) Millsp.] leaves. Food Chemistry. 121 :1150-1155.
39.Kubota N, Tobe K, Terauchi Y, Eto K, Yamauchi T, Suzuki R. 2000. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes. 49 :1880-9.
40.Lai YS, Hsu WH, Huang JJ, Wu SC. 2012. Antioxidant and anti-inflammatory effects of pigeon pea (Cajanus cajan L.) extracts on hydrogen peroxide- and lipopolysaccharide-treated RAW264.7 macrophages. Food Funct. 3(12) :1294-301.
41.Lee BH, Hsu WH, Chang YY, Kuo HF, Hsu YW, Pan TM. 2012. Ankaflavin: a natural novel PPARγ agonist upregulates Nrf2 to attenuate methylglyoxal-induced diabetes in vivo. Free Radic Biol Med. 53 :2008-16.
42.Liang L, Luo M, Fu Y, Zu Y, Wang W, Gu C, Zhao C, Li C, Efferth T. 2013. Cajaninstilbene acid (CSA) exerts cytoprotective effects against oxidative stress through the Nrf2-dependent antioxidant pathway. Toxicol Lett. 219(3) :254-61.
43.Luo M, Liu X, Zu Y, Fu Y, Zhang S, Yao L. 2010. Cajanol, a novel anticancer agent from Pigeonpea [Cajanus cajan (L.) Millsp.] roots, induces apoptosis in human breast cancer cells through a ROS mediated mitochondrial pathway. Chem Biol Interac. 188 :151-60.
44.Meshkani R, Adeli K. 2009. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. Clin. Biochem. 42 :1331-46.
45.Mitri J, Dawson-Hughes B, Hu FB, Pittas AG. 2011. Effects of vitamin D and calcium supplementation on pancreatic β cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. Am J Clin Nutr. 94(2) :486-94.
46.Pal D., Mishra P., Sachan N. and Ghosh A. K. 2011. Biological activities and medicinal properties of Cajanus cajan (L) Millsp. J Adv Pharm Technol Res. 2(4) :207-214.
47.Pirola L, Johnston AM, Van Obberghen E. 2004. Modulation of insulin action. Diabetologia. 47 :170-84.
48.Report of a WHO consultation. 1999.
49.Saltiel AR, Kahn CR. 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 414 :799-806.
50.Saltiel AR: The molecular and physiological basis of insulin resistance. J. Clin. 2000. Invest. 106 :163-164.
51.Serrano J, Puupponen-Pimi¨a R, Dauer A, Aura A, Saura-Calixto F. 2009. Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res. 53 :S310-29.
52.Sharma S., Agarwal N. and Verma P. 2011. Pigeon pea (Cajanus cajan L.): A Hidden Treasure of Regime Nutrition. Journal of Functional and Environmental Botany. 1(2) :91-101.
53.Smith JM, Steel DH. 2011. Anti-vascular endothelial growth factor for prevention of postoperative vitreous cavity haemorrhage after vitrectomy for proliferative diabetic retinopathy. Cochrane Database Syst Rev. May 11(5) :CD008214.
54.Song X, Bao MM, Li DD, Li YM. 1999. Advanced glycation in D-galactose induced mouse aging model. Mech Aging Dev. 108 :239-251.
55.Tang Y, Wang B, Zhou X.J. 1999. Effect of external application of herbal cajani preparation on the fi bronection content during healing process of open wound, J. Guangzhou U. Tradit. Chin. Med. 1 :302-304.
56.Tsuneki H, Sekizaki N, Suzuki T, Kobayashi S, Wada T, Okamoto T, Kimura I, Sasaoka T. 2007. Coenzyme Q10 prevents high glucose-induced oxidative stress in human umbilical vein endothelial cells. Eur J Pharmacol. 566 :1-10.
57.Wei ZF, Luo M, Zhao CJ, Li CY, Gu CB, Wang W, Zu YG, Efferth T, Fu YJ. 2013. UV-induced changes of active components and antioxidant activity in postharvest pigeon pea [Cajanus cajan (L.) Millsp.] leaves. J Agric Food Chem. 61(6) :1165-71.
58.White MF. 2003. Insulin signaling in health and disease. Science. 302(5651) :1710-1.
59.Williams WB, Cuvelier ME and Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensn. 28 :25-30.
60.Wu, N., Fu, K., Fu, Y.J., Zu, Y.G., Chang, F.R., Chen, Y.H. 2009. Antioxidant activities of extracts and main components of pigeon pea [Cajanus cajan (L.) Millsp.] leaves. Molecules. 14 :1032-1043.
61.Yamagishi S. 2011. Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Exp Gerontol. 46(4) :217-24.
62.Zhang DY, Zhang S, Zu YG, Fu YJ, Kong Y, Gao Y. 2010. Negative pressure cavitation extraction and antioxidant activity of genistein and genistin from the roots of pigeon pea. Separation and Purification Tech. 74 :261-70.
63.Zu YG, Liu XL, Fu YJ, Wu N, Kong Y, Wink M. 2010. Chemical composition of the SFE-CO2 extracts from Cajanus cajan (L.) Huth and their antimicrobial activity in vitro and in vivo. Phytomed. 17 :1095-101.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top