跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/01 04:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳世偉
研究生(外文):Shih-Wei Chen
論文名稱:單一電感三輸出直流-直流升壓轉換器與雙輸出二階型降壓式直流-直流轉換器
論文名稱(外文):Single-Inductor Tri-Output DC-DC Boost Converter and Dual-Output Quadratic DC-DC Buck Converter
指導教授:陳建中陳建中引用關係
指導教授(外文):Jiann-Jong Chen
口試委員:郭建宏蘇景暉黃育賢
口試委員(外文):Chien-Hung KuoJuing-Huei SuYuh-Shyan Hwang
口試日期:2009-06-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:94
中文關鍵詞:單一電感多輸出升壓轉換器降壓轉換器直流-直流平均電流模式
外文關鍵詞:single-inductor multi-outputmulti-outputboostbuckquadraticDC-DCconverteraverage current-modecurrent sensingconstant frequency
相關次數:
  • 被引用被引用:1
  • 點閱點閱:332
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文包含兩個研究的題目,為單一電感三輸出直流-直流升壓轉換器與雙輸出二階型降壓式轉換器,其單一電感三輸出直流-直流升壓轉換器目的是利用單一電感實現三輸出的升壓轉換器,可減少電感使用的成本並達到多輸出的目的,而雙輸出二階型降壓式轉換器除了也具有雙輸出的功能外,具有較大的轉換比是它的特色,因此可以利用這個特色,使降壓器降壓至更低的電壓,並且在此研究中使用平均電流控制使暫態反應更加快速。
提出的電路皆使用台積電TSMC CMOS 0.35μm 2P4M 製程技術來完成。量測結果方面,其單一電感三輸出直流-直流升壓轉換器供應電壓範圍為2.5V至3.1V,最大負載電流可達300mA,輸出電壓範圍為2.8V至4.4V,其效率高達86.9%,適合應用於可攜式裝置上,或是SOC的系統。雙輸出二階型降壓式轉換器,供應電壓範圍為4.5V~5.5V,輸出電流可達1A,輸出電壓範圍為95mV至1.25V,適合作為低電壓的輸入電源。
There are two kinds of DC-DC converters presented in this study. One is the single-inductor tri-output (SITO) DC-DC boost converter, and the other one is the dual-output quadratic (DOQ) DC-DC buck converter. The proposed SITO DC-DC boost converter not only provides three output sources but also uses single inductor. The proposed DOQ DC-DC buck converter has a wider conversion ratio with ultra-low voltage for dual-output voltage sources. In this study, the methodology for controller design of DOQ DC-DC buck converter is given using average current-mode control.
The proposed circuits have been fabricated with TSMC 0.35mm 2P4M CMOS processes. The experimental results showed that SITO DC-DC boost converter can operate with supply voltage form 2.5V to 3.1V, which is suitable for single-cell lithium-ion battery supply applications. The output ripple voltage is about 40mV with a 220-μF off-chip capacitor and 10-μH off-chip inductor. The output maximum load current is up to 300mA. The output voltage range is from 2.8V to 4.4V. The maximum power efficiency is up to 86.9%.
The experimental results showed that DOQ DC-DC buck converter can operate with supply voltage form 4.5V to 5.5V. The output ripple voltage is about 50mV with a 10-μF off-chip capacitor and 5-μH and 6-μH off-chip inductor. The output maximum load current is up to 1A. The output voltage range is from 95mV to 1.25V.
Content

摘 要 I
Absatract II
誌 謝 IV
Content V
List of Table VIII
List of Figure IX
Chapter 1 INTRODUCTION 1
1.1 Background and Review 1
1.2 Motivation 7
1.3 Thesis Organization 8
Chapter 2 INTRODUCTION OF DC-DC BUCK AND BOOST CONVERTER 9
2.1 Principles of DC-DC Buck and Boost Converter 9
2.2 Continuous and Discontinuous Conduction Mode 13
2.2.1 Continuous and Discontinuous Conduction Mode of Buck Converter 14
2.2.1.1 Continuous Conduction Mode of Buck Converter 14
2.2.1.2 Discontinuous Conduction Mode of Buck Converter 19
2.2.2 Continuous and Discontinuous Conduction Mode of Boost Converter 22
2.2.2.1 Continuous Conduction Mode of Boost Converter 22
2.2.2.2 Discontinuous Conduction Mode of Boost Converter 28
2.3 The Specifications of DC-DC converter 31
2.3.1 Transient Response 31
2.3.2 Output Ripple Voltage 32
2.3.3 Line Regulation 32
2.3.4 Load Regulation 33
2.3.5 Efficiency 33
Chapter 3 CONTROL STRATEGIES OF DC-DC CONVERTER 34
3.1 Voltage-mode Control Strategy 35
3.1.1 Pulse-frequency Modulation (PFM) Control Mode 35
3.1.2 Pulse-width Modulation (PWM) Control Mode 35
3.1.2.1 Error Amplifier and Compensator 36
3.1.2.2 Pulse-width Modulation 39
3.1.2.3 Non-overlapping Circuit and Driving Circuit 40
3.2 Current-mode Control Strategy 41
3.2.1 Types of Current-mode Control 41
Chapter 4 SINGLE-INDUCTOR TRI-OUTPUT DC-DC BOOST CONVERTER 44
4.1 The Architecture of Voltage-mode Control System 44
4.2 Design and Analysis of Circuits 46
4.2.1 Comparator 46
4.2.2 Controller 47
4.2.3 Selector 47
4.2.4 Compensator 48
4.2.5 Pulse-width Modulation Circuit 49
4.2.6 Non-overlapping Circuit and Driving Circuit 51
4.3 Simulation Result of This Work 52
Chapter 5 Dual-output Quadratic DC-DC Buck Converter 54
5.1 The Principle and Analysis of Quadratic DC-DC Buck Converter 54
5.2 The Architecture of Current-mode Control System 57
5.3 Design and Analysis of Circuits 59
5.3.1 Comparator 59
5.3.2 Current Comparator 60
5.3.3 Selector and Compensator 61
5.3.4 Current Sensing Circuits 61
5.3.5 Average Current-mode Control Circuits 64
5.4 Simulation Result of This Work 66
Chapter 6 EXPERIMENTAL RESULTS 69
6.1 Micrograph 69
6.1.1 Micrograph of SITO DC-DC Boost Converter 69
6.1.2 Micrograph of DOQ DC-DC Buck Converter 74
6.2 Experimental Environment and Result 79
6.2.1 Experimental Environment and Result of SITO DC-DC Boost Converter 79
6.2.2 Experimental Environment and Result of DOQ DC-DC Buck Converter 86
Chapter 7 CONCLUSIONS AND FUTURE WORK 90
7.1 Conclusions 90
7.2 Future Work 90
Reference 92
[1]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. Norwell, MA: Kluwer, 2001 2nd.
[2]C. Y. Leung, P. K. T. Mok, and K. N. Leung, “A 1-V integrated current-mode boost converter in standard 3.3/5-V CMOS technologies,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2265-2274, Nov. 2005.
[3]M. Siu, P. K. T. Mok, K. N. Leung, Y.-H. Lam, and W.-H. Ki, “A voltage-mode pwm buck regulator with end-point prediction,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 53, no. 4, pp. 294-298, Apr. 2006.
[4]V. Kursun, S. G. Narendra, V. K. De, and E. G. Friedman, “Low-voltage-swing monolithic dc–dc conversion,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 55, no. 5, pp. 241-248, May 2004.
[5]K. M. Tsang, W. L. Chan, and X. L. Wei, “Robust DC/DC buck converter using conditional integrator compensator,” IEEE Electronics Letters, vol. 44, no. 2, pp. 152-153, Jan. 2008.
[6]C. F. Lee and P. K. T. Mok, “A monolithic current-mode CMOS DC–DC converter with on-chip current-sensing technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
[7]K.-H. Chen, C.-J. Chang, and T.-H. Liu, “Bidirectional current-mode capacitor multipliers for on-chip compensation,” IEEE Trans. on Power Electronics, vol. 23, no.1, pp. 180-188, Jan. 2008.
[8]C. Y. Leung, P. K. T. Mok, K. N. Leung, and M. Chan “An integrated CMOS current-sensing circuit for low-Voltage current-mode buck regulator,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 52, no. 7, pp. 394-397, Jul. 2005.
[9]S.-C. Tan, Y. M. Lai, and C. K. Tse, “A unified approach to the design of PWM-Based sliding-mode voltage controllers for basic DC-DC converters in continuous conduction mode,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 53, no. 8, pp. 1816-1827, Aug. 2006.
[10]T. Y. Man, P. K. T. Mok, and M. Chan, “An auto-selectable-frequency pulse-width modulator for buck converters with improved light-load efficiency,” in IEEE International Solid-State Circuits Conference, Feb. 2008, pp. 440-626.
[11]B. Sahu and G. A. Rincón-Mora, “An accurate, low-voltage, CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) control,” IEEE Trans. on Circuits and systems I: Regular Papers, vol. 54, no. 2, pp. 312-321, Feb. 2007.
[12]K. Viswanathan, R. Oruganti, and D. Srinivasan, ”Dual-mode control of tri-state boost converter for improved performance,” IEEE Trans. on Power Electronics, vol. 20, no.4, pp. 790-797, Jul. 2005.
[13]H.-W. Huang, K.-H. Chen, and S.-Y. Kuo, “Dithering skip modulation, width and dead time controllers in highly efficient DC-DC converters for system-on-chip applications,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2451-2465, Nov. 2007.
[14]S. Zhou, and G. A. Rincón-Mora, “A high efficiency, soft switching DC–DC converter with adaptive current-ripple control for portable applications,” IEEE Trans. on Circuits and System II: Express Briefs, vol. 53, no. 4, pp. 319-323, Apr. 2006.
[15]W.-R. Liou, M.-L. Yeh, and Y. L. Kuo, “A high efficiency dual-mode buck converter IC for portable applications,” IEEE Trans. on Power Electronics, vol. 23, no.2, pp. 667-677, Mar. 2008.
[16]H.-W. Huang, C.-C. Chien, K.-H. Chen, and S.-Y. Kuo, “Highly efficient tri-mode control of buck converters with load sensing technique,” in Power Electronics Specialists Conference, Jun. 2006, pp. 1-4.
[17]E. Bonizzoni, F. Borghetti, P. Malcovati, F. Maloberti, and B. Niessen, “A 200mA 93% peak efficiency single-inductor dual-output DC-DC buck converter,” in IEEE International Solid-State Circuits Conference, Feb. 2007, pp. 526-619.
[18]D. Ma, W.-H. Ki, C.-Y. Tsui, and P. K. T. Mok, “Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 89-100, Jan. 2003.
[19]D. Ma, W.-H. Ki, and C.-Y. Tsui, “A pseudo-CCM/DCM SIMO switching converter with freewheel switching,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1007-1014, Jun. 2003.
[20]H.-P. Le, C.-S. Chae, K.-C. Lee, S.-W. Wang, G.-H. Cho, and G.-H. Cho, “A single-inductor switching DC–DC converter with five outputs and ordered power-distributive control,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2706-2714, Dec. 2007.
[21]C.-S. Chae, H.-P. Le, K.-C. Lee, M.-C. Lee, G.-H. Cho, and G.-H. Cho, “A single-inductor step-up DC-DC switching converter with bipolar outputs for active matrix OLED mobile display panels,” in International Solid-State Circuits Conference, Feb. 2007, pp. 136-592.
[22]C.-S. Chae, H.-P. Le, K.-C. Lee, G.-H. Cho, and G.-H. Cho, “A single-inductor step-up DC-DC switching converter with bipolar outputs for active matrix OLED mobile display panels,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 509-524, Feb. 2009.
[23]M.-H. Huang and K.-H. Chen, “Single-inductor multi-output (SIMO) DC-DC converters with high light-load efficiency and minimized cross-regulation for portable devices,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1099-1111, Apr. 2009.
[24]http://electronicdesign.com/Files/29/9189/9189_01.pdf
[25]M. M. Islam, D. R. Allee, S. Konasani, and A. A. Rodriguez. “A low-cost digital controller for a switching DC converter with improved voltage regulation,” IEEE Power Electronics Letters, vol. 2, no. 4, pp. 121-124, Dec. 2004.
[26]A. Pizzutelli, A. Carrera, M. Ghioni, and S. Saggini, “Digital dead time auto-tuning for maximum efficiency operation of isolated DC-DC converters,” in Power Electronics Specialists Conference, Jun. 2006, pp. 839-845.
[27]W. Qiu, S. Mercer, Z. Liang, and Greg Miller, “Driver deadtime control and its impact on system stability of synchronous buck voltage regulator,” IEEE Trans. on Power Electronics, vol. 23, no.1, pp. 163-171, Jan. 2008.
[28]J.-J. Chen, “An active current-sensing constant-frequency HCC buck converter using phase-frequency-locked techniques,” IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55, no. 4, pp. 761-769, Apr. 2008.
[29]G. G., Associate, E. Figueres, and A. Mocholí, “Novel three-controller average current mode control of DC–DC PWM converters with improved robustness and dynamic response,” IEEE Trans. on Power Electronics, vol. 15, no.3, pp. 516-528, Jan. 2000.
[30]J. A. Morales-Saldaña, J. Leyva-Ramos, E. E. Carbajal-Gutiérrez, and M. G. Ortiz-Lopez, “Average current-mode control scheme for a quadratic buck converter with a single switch,” IEEE Trans. on Power Electronics, vol. 23, no. 1, Jan. pp. 485-490, 2008.
[31]V. M. Pacheco, A. J. Do Nascimento, V. J. Farias, J. B. Vieira, and L. C. de Freitas, ”A quadratic buck converter with lossless commutation,” IEEE Trans. on Industrial Electronics, vol. 47, no. 2, pp. 264-272, Apr. 2000.
[32]J. A. Morales-Saldana, E. E. Carbajal- Gutierrez, and J. Leyva-Ranos, “Modeling of switch-mode DC-DC cascade converters,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 1, pp. 295-299, pp. 295-299, Jan. 2002.
[33]D. Maksimovic and S. Cuk, “Switching converters with wide DC conversion range,” IEEE Trans. on Power Electronics, vol. 6, no. 1, pp. 151-157, Jan. 1991.
[34]L. d. R. Barbosa, J. B. Vieira, L. C. de Freitas, M. S. Vilela, and V. J. Farias, “A buck quadratic PWM soft-switching converter using a single active switch,” IEEE Trans. on Power Electronics, vol. 14, no. 3, pp. 445-453, May 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊