跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.13) 您好!臺灣時間:2025/11/24 01:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:宋程硯
研究生(外文):Song, Cheng-Yan
論文名稱:生化網路的內外噪聲物理分解
論文名稱(外文):Physical decomposition of intrinsic and extrinsic noises in biochemical networks
指導教授:張正宏張正宏引用關係
指導教授(外文):Chang, Cheng-Hung
口試委員:吳天鳴黎璧賢張正宏
口試委員(外文):Wu, Ten-Ming
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立交通大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:49
中文關鍵詞:內外噪聲物理分解內外噪聲分解內外噪聲
外文關鍵詞:Physical decomposition of intrinsic and extrinsic noisesDecomposition of intrinsic and extrinsic noisesIntrinsic and extrinsic noises
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
內外噪聲常同時存在於生物系統中,如典型的DNA轉錄轉譯問題,因此過去有許多分解這兩種效應的工作。有別於過去Swain生物角度的內外噪聲定義,本研究採van Kampen的物理角度定義,對chemical master equation做微擾,推導出物理版本的內外噪聲分解公式。我們將理論應用在Yi-Der Chen的網路模型,藉由解析解推導及電腦模擬證實存在“外噪聲壓抑內噪聲隨機性”的可能性,並在低維系統推導出該可能性出現的條件。此種兩噪聲加成後漲落減小的現象,有違直覺。我們將此物理版分解公式跟Swain的生物版分解公式做比較,分析他們的相似與相異性。
It is rather often that intrinsic and extrinsic noises coexist in a biological system. A typical example is the transcription and translation of DNA. This raises numerous works devoting to decomposing these two effects. Apart from the previous definition of intrinsic and extrinsic noises from biological aspect, this work adopts the definition of van Kampen from physical aspect. Based on that definition, we perturb the chemical master equation and derive a physical version of decomposition formula for intrinsic and extrinsic noises. We apply this theory to the network model of Yi-Der Chen. The derived exact solutions and numerical studies on that model reveal the possibility of “suppressing intrinsic noise induced stochasticity by extrinsic noises”. The condition for this possibility is derived in a low dimensional network. This suppression indicates that the fluctuations could decline when intrinsic and extrinsic noises are added together, which is a bit counter-intuition. We compare this physical version of decomposition formula with the biological version of formula derived by Swain and analyze the common and distinct features between these two formulas.
中文摘要.............................................i
Abstract.............................................ii
誌謝.................................................iii
圖目錄...............................................v
第一章 歷史回顧與動機................................1
第二章 隨機過程的漲落................................3
2.1 Random walk model的漲落..........................3
2.2 兩態系統的漲落...................................4
第三章 內外噪聲分解理論..............................6
3.1 純內噪聲系統的漲落...............................6
3.1.1 Chemical master equation.......................6
3.1.2 聯合機率函數的解...............................10
3.2 內外噪聲共存系統的漲落...........................16
3.2.1 微擾chemical master equation...................16
3.2.2 微擾聯合機率函數...............................21
3.2.3 內外噪聲拆解公式...............................29
3.3 內外噪聲共存的網路模型...........................33
3.3.1 微擾chemical master equation的應用.............33
3.3.2 外噪聲對內噪聲隨機性的影響.....................36
3.3.3 外噪聲壓抑內噪聲隨機性的條件...................39
第四章 物理版與生物版噪聲分解公式比較................42
第五章 結論與展望....................................46
附錄一...............................................47
附錄二...............................................48
參考文獻.............................................49
[1] Peter S. Swain, Michael B. Elowitz, Eric D.Siggia. 2002. Intrinsic and extrinsic contributions to stochasticity in gene expression. PNAS. Vol. 99. No. 20. 12795-12800.
[2] Michael B. Elowitz, Arnold J. Levine, Eric D. Siggia, Peter S. Swain. 2002. Stochastic Gene Expression in a Single Cell. SCIENCE. Vol. 297.
[3] Hédia Maamar, Arjun Raj, David Dubnau. 2007. Noise in Gene Expression DeterminesCell Fate in Bacillus subtilis. Science. Vol. 317.
[4] Dmitri Volfson, Jennifer Marciniak, William J. Blake, Natalie Ostroff, Lev S. Tsimring, Jeff Hasty. 2006. Origins of extrinsic variability in eukaryotic gene expression. Nature. Vol. 439.
[5] Sorin Ta ̌nase-Nicola, Patrick B. Warren, Pieter Rein ten Wolde. 2006. Signal Detection, Modularity, and Correltion between Extrinsic and Intrinsic Noise in Biochemical Networks. The American Physical Society.
[6] Masahiro Ueda, Tatsuo Shibata. 2007. Stochastic Signal Processing and Transduction in Chemotactic Responseof Eukaryotic Cells. Biophysical Journal. Vol. 93. 11-20.
[7] Andreas Hilfinger, Johan Paulsson. 2011. Separating intrinsic from extrinsic fluctuations in dynamic biological systems. PNAS. Vol. 108. No. 29. 12167-12172.
[8] Johan Paulsson. 2005. Models of stochastic gene expression. Physics of Life Reviews 2. 157–175.
[9] De-Ming Deng, Cheng-Hung Cheng. 2015. Stochastic lumping analysis for linear kinetics and its application to the fluctuation relations between hierarchical kinetic networks.
[10] William Bialek, Sima Setayeshgar. 2005. Physical limits to biochemical signaling. PNAS. Vol. 102. No. 29. 10040-10045.
[11] Yi-Der Chen. 1987. Asymmetry and external noise-induced free energy transduction. Proc. Natl. Sci. USA. Vol. 84, 99. 729-733.
[12] N.G. Van Kampen. Stochastic Process In Physics And Chemistry. Ch5, Ch7.
[13] Meyer B. Jackson. Molecular And Cellular Biophysics. Ch6, Ch9, Ch12.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top