|
1. http://www.hpa.gov.tw/Bhpnet/Web/Index/Index.aspx. 2. Malhotra, V. and M.C. Perry, Classical chemotherapy: mechanisms, toxicities and the therapeutic window. Cancer Biol Ther, 2003. 2(4 Suppl 1): p. S2-4. 3. Tomasz, M., Mitomycin C: small, fast and deadly (but very selective). Chem Biol, 1995. 2(9): p. 575-9. 4. Propper, D.J., Levitt, N. C., O''Byrne, K., Talbot, D. C., Ganesan, T. S., Thompson, C. H., Rajagopalan, B., Littlewood, T. J., Dixon, R. M. and Harris, A. L., Phase II study of the oxygen saturation curve left shifting agent BW12C in combination with the hypoxia activated drug mitomycin C in advanced colorectal cancer. Br J Cancer, 2000. 82(11): p. 1776-82. 5. Gabizon, A. and Martin, F., Therapeutic efficacy of a lipid-based prodrug of mitomycin C in pegylated liposomes: studies with human gastro-entero-pancreatic ectopic tumor models. J Control Release, 2012. 160(2): p. 245-53. 6. Gabizon, A., Tzemach, D., Horowitz, A. T., Shmeeda, H., Yeh, J. and Zalipsky, S., Reduced toxicity and superior therapeutic activity of a mitomycin C lipid-based prodrug incorporated in pegylated liposomes. Clin Cancer Res, 2006. 12(6): p. 1913-20. 7. Peer, D. and R. Margalit, Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int J Cancer, 2004. 108(5): p. 780-9. 8. Shuhendler, A.J., Cheung, R. Y., Manias, J., Connor, A., Rauth, A. M., Wu, X. Y., A novel doxorubicin-mitomycin C co-encapsulated nanoparticle formulation exhibits anti-cancer synergy in multidrug resistant human breast cancer cells. Breast Cancer Res Treat, 2010. 119(2): p. 255-69. 9. http://www.ktgh.com.tw/. 10. http://ezproxy.kmu.edu.tw:2068/micromedex2/librarian. 11. http://www.sigmaaldrich.com. 12. Vemuri, S. and C.T. Rhodes, Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv, 1995. 70(2): p. 95-111. 13. Sharma, A. and U.S. Sharma, Liposomes in drug delivery: progress and limitations. International Journal of Pharmaceutics, 1997. 154(2): p. 123-140. 14. Liu, X. and G. Huang, Formation strategies, mechanism of intracellular delivery and potential clinical applications of pH-sensitive liposomes. Asian Journal of Pharmaceutical Sciences, 2013. 8(6): p. 319-328. 15. Jesorka, A. and O. Orwar, Liposomes: technologies and analytical applications. Annu Rev Anal Chem (Palo Alto Calif), 2008. 1: p. 801-32. 16. Jones, M.N., The surface properties of phospholipid liposome systems and their characterisation. Adv Colloid Interface Sci, 1995. 54: p. 93-128. 17. Mashaghi, S., Jadidi, T., Koenderink, G., and Mashaghi, A.,Lipid nanotechnology. Int J Mol Sci, 2013. 14(2): p. 4242-82. 18. http://www.avantilipids.com/. 19. Ohvo-Rekila, H., Ramstedt, B., Leppimaki, P., and Slotte, J. P., Cholesterol interactions with phospholipids in membranes. Prog Lipid Res, 2002. 41(1): p. 66-97. 20. G&;#243;mez-Hens, A. and J.M. Fern&;#225;ndez-Romero, Analytical methods for the control of liposomal delivery systems. TrAC Trends in Analytical Chemistry, 2006. 25(2): p. 167-178. 21. Mozafari, M.R., Johnson, C., Hatziantoniou, S. and Demetzos, C., Nanoliposomes and their applications in food nanotechnology. J Liposome Res, 2008. 18(4): p. 309-27. 22. Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M. and Nejati-Koshki, K., Liposome: classification, preparation, and applications. Nanoscale Res Lett, 2013. 8(1): p. 102. 23. Torchilin, V.P., Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov, 2005. 4(2): p. 145-60. 24. Simoes, S., Moreira, J. N., Fonseca, C., Duzgunes, N. and Lima, M. C. , On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev, 2004. 56(7): p. 947-65. 25. Leite, E.A., Souza, C. M., Carvalho-Junior, A. D., Coelho, L. G., Lana, A. M., Cassali, G. D. and Oliveira, M. C., Encapsulation of cisplatin in long-circulating and pH-sensitive liposomes improves its antitumor effect and reduces acute toxicity. Int J Nanomedicine, 2012. 7: p. 5259-69. 26. Immordino, M.L., F. Dosio, and L. Cattel, Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. International Journal of Nanomedicine, 2006. 1(3): p. 297-315. 27. Gabizon, A. and F. Martin, Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs, 1997. 54 Suppl 4: p. 15-21. 28. Scherphof, G.L., Dijkstra, J., Spanjer, H. H., Derksen, J. T. and Roerdink, F. H., Uptake and intracellular processing of targeted and nontargeted liposomes by rat Kupffer cells in vivo and in vitro. Ann N Y Acad Sci, 1985. 446: p. 368-84. 29. Allen, T.M., Hansen, C., Martin, F., Redemann, C. and Yau-Young, A., Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta, 1991. 1066(1): p. 29-36. 30. https://zh.wikipedia.org. 31. Weitman, S.D., Lark, R. H., Coney, L. R., Fort, D. W., Frasca, V., Zurawski, V. R., and Kamen, B. A., Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res, 1992. 52(12): p. 3396-401. 32. Low, P.S., W.A. Henne, and D.D. Doorneweerd, Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res, 2008. 41(1): p. 120-9. 33. Wu, J., Q. Liu, and R.J. Lee, A folate receptor-targeted liposomal formulation for paclitaxel. International Journal of Pharmaceutics, 2006. 316(1–2): p. 148-153. 34. Wu, M., W. Gunning, and M. Ratnam, Expression of folate receptor type alpha in relation to cell type, malignancy, and differentiation in ovary, uterus, and cervix. Cancer Epidemiol Biomarkers Prev, 1999. 8(9): p. 775-82. 35. Nakashima-Matsushita, N., Homma, T., Yu, S., Matsuda, T., Sunahara, N., Nakamura, T., Tsukano, M., Ratnam, M. and Matsuyama, T., Selective expression of folate receptor beta and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis Rheum, 1999. 42(8): p. 1609-16. 36. Sudimack, J.J., Guo, W., Tjarks, W. and Lee, R. J., A novel pH-sensitive liposome formulation containing oleyl alcohol. Biochim Biophys Acta, 2002. 1564(1): p. 31-7. 37. Hilgenbrink, A.R. and P.S. Low, Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci, 2005. 94(10): p. 2135-46. 38. Lu, Y., Ding, N., Yang, C., Huang, L., Liu, J. and Xiang, G., Preparation and in vitro evaluation of a folate-linked liposomal curcumin formulation. J Liposome Res, 2012. 22(2): p. 110-9. 39. Meyer, F., Ridwelski, K., Gebauer, T., Grote, R., Martens-Lobenhoffer, J. and Lippert, H., Pharmacokinetics of the antineoplastic drug mitomycin C in regional chemotherapy using the aortic stop flow technique in advanced pancreatic carcinoma. Chemotherapy, 2005. 51(1): p. 1-8. 40. Lee, R.J. and L. Huang, Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J Biol Chem, 1996. 271(14): p. 8481-7. 41. Ishida, T., Kirchmeier, M. J., Moase, E. H., Zalipsky, S. and Allen, T. M., Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells. Biochim Biophys Acta, 2001. 1515(2): p. 144-58. 42. Li, Y., Wu, H., Yang, X., Jia, M., Li, Y., Huang, Y., Lin, J., Wu, S., and Hou, Z., Mitomycin C-soybean phosphatidylcholine complex-loaded self-assembled PEG-lipid-PLA hybrid nanoparticles for targeted drug delivery and dual-controlled drug release. Mol Pharm, 2014. 11(8): p. 2915-27. 43. Ye, P., Zhang, W., Yang, T., Lu, Y., Lu, M., Gai, Y., Ma, X. and Xiang, G., Folate receptor-targeted liposomes enhanced the antitumor potency of imatinib through the combination of active targeting and molecular targeting. Int J Nanomedicine, 2014. 9: p. 2167-78. 44. http://www.haiyunzl.com/meitu/pic. 45. Zhou, Q.M., Wang, X. F., Liu, X. J., Zhang, H., Lu, Y. Y. and Su, S. B., Curcumin enhanced antiproliferative effect of mitomycin C in human breast cancer MCF-7 cells in vitro and in vivo. Acta Pharmacol Sin, 2011. 32(11): p. 1402-10. 46. http://www.enzolifesciences.com/ALX-850-039/cell-counting-kit-8. 47. Beijnen, J.H. and W.J.M. Underberg, Degradation of mitomycin C in acidic solution. International Journal of Pharmaceutics, 1985. 24(2–3): p. 219-229. 48. Sabeti, B., Noordin, M. I., Mohd, S., Hashim, R. and Dahlan, A., Development and characterization of liposomal doxorubicin hydrochloride with palm oil. 2014. 2014: p. 765426. 49. Shi, G., Guo, W., StepHenson, S. M. and Lee, R. J., Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. J Control Release, 2002. 80(1-3): p. 309-19. 50. Thakur, R., A. Das, and A. Chakraborty, Interaction of human serum albumin with liposomes of saturated and unsaturated lipids with different phase transition temperatures: a spectroscopic investigation by membrane probe PRODAN. RSC Advances, 2014. 4(28): p. 14335. 51. Alexis, F., Pridgen, E., Molnar, L. K. and Farokhzad, O. C., Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm, 2008. 5(4): p. 505-15. 52. Muhonen, T.T., Wiklund, T. A., Blomqvist, C. P. and Pyrhonen, S. O., Unexpected prolonged myelosuppression after mitomycin, mitoxantrone and methotrexate. Eur J Cancer, 1992. 28a(12): p. 1974-6. 53. Verwey, J., J. de Vries, and H.M. Pinedo, Mitomycin C-induced renal toxicity, a dose-dependent side effect? Eur J Cancer Clin Oncol, 1987. 23(2): p. 195-9. 54. http://www.kmuh.org.tw/www/clireser/29.htm.
|