跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 01:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾奕盛
研究生(外文):Yi-Sheng Zeng
論文名稱:表面聲波共振器對階梯結構射頻濾波器特性之影響
論文名稱(外文):The Effect of Surface Acoustic Wave Resonators on The Ladder-Type RF Filters
指導教授:王曙民
指導教授(外文):Shu-Ming Wang
學位類別:碩士
校院名稱:義守大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:58
中文關鍵詞:單埠表面聲波共振器階梯結構表面聲波濾波器
外文關鍵詞:One-port SAW ResonatorsLadder-type SAW Filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於第4代行動無線寬頻通訊傳輸技術的蓬勃發展,射頻濾波器被廣泛的使用在手機中使得需求量大增,其中階梯結構表面聲波濾波器因具有低插入損失、寬頻寬、低形狀因子、可承受功率大等幾項優越特性,為射頻聲波濾波器的常用架構之一,而單埠表面聲波共振器為其單位元件。本論文針對單埠表面聲波共振器之幾何參數,包含有IDT靜態電容(IDT對數和重疊長度)、電極厚度、IDT金屬比以及反射器根數對共振器之頻寬比、品質因子以及假模效應等特性影響進行有系統的探討,並尋找出設計一階階梯結構表面聲波濾波器建議流程,進而印證至階梯結構表面聲波濾波器之設計與特性分析,並以4G-LTE Band 7,與雙定位系統(GPS/GLONASS)作為設計與模擬規格印證。
As the growth of the 4th generation of mobile wireless broadband communication transmission technology (4G, LTE), RF surface acoustic wave filters are widely used in mobile phones for its excellent performance. Ladder type surface acoustic wave filter, which has the merits of low insertion loss, wide bandwidth, excellent shape factor and etc., is one of the most common architectures of RF SAW filters adopted in mobile phone systems. Since the unit element of a ladder type RF SAW filter is one port SAW resonators, the characteristics of one port resonators would determine the performance of a ladder type filter. In this work, the effect of the geometric parameters of the resonator, which includes IDT static capacitance (IDT logarithm and overlap length), electrode thickness, IDT metal ratio and number of the reflectors, on the characteristics of the one-port resonators, such as bandwidth ratio, quality factor and pseudo mode, were studied in detail. By applying the study results, a design procedure for an one-stage ladder-type SAW filter was proposed. Finally, a ladder-type filter were designed, step by step following the proposed procedure to evaluate the design procedure.
中文摘要 I
英文摘要 II
致謝 III
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1研究背景與研究動機 1
1-2 論文內容及其架構 3
第二章 壓電材料與壓電特性 4
2-1壓電特性 4
2-1-1 正壓電效應 4
2-1-2 逆壓電效應 5
2-2 壓電材料 5
第三章 單埠表面聲波共振器特性分析 8
3-1 單埠表面聲波共振器幾何結構 8
3-1-1指叉換能器(IDT)基本結構及其等效電路 8
3-1-1-1 指叉換能器(IDT)基本結構 8
3-1-1-2 等效電路模型 10
3-2 單埠表面聲波共振器之特性分析 13
3-2-1單埠表面聲波共振器之RLC等效電路工作原理 13
3-2-2 IDT對數與重疊長度對共振器特性之影響 15
3-2-3電極厚度對共振器特性之影響 17
3-2-4 IDT金屬比對共振器特性之影響 20
3-2-5 反射器根數對共振器特性之影響 23
第四章 單埠表面聲波共振器特對階梯結構表面聲波濾波器特性之影 25
4-1 階梯結構表面聲波濾波器階梯結構與工作原理 25
4-2 將單埠共振器應用至階梯結構表面聲波濾波器之設計 28
4-2-1設計步驟 28
4-2-2 共振器特性對階梯結構濾波器之影響 29
4-2-2-1共振器對數與重疊長度對濾波器傳輸特性之影響 29
4-2-2-2指叉換能器(IDT)電極厚度對濾波器傳輸特性之影響 30
4-2-2-3共振器金屬比對濾波器傳輸特性之影響 31
4-3 設計範例 35
第五章 結論與未來方向 42
5-1結論 42
5-2 未來方向 43
參考文獻 44
[1] Lord Rayleigh, “On wave propagation along the plane surface of an elastic solid,” Proceedings of London Math. Soc., Vol.7, pp.4-11, 1885.
[2] R.M.White and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves,” Appl. Phys. Lett., Vol.17, pp.314-316, 1965.
[3] R. M. White, “Surface elastic waves,” Proceedings of IEEE, Vol.58,pp.1238-1276,1970.
[4] R. H. Tancrell, M. B. Schulz, H. H. Barrett, L. Davies and M. G. Holland, “Dispersive delay lines using ultrasonics surface wave,” Proceedings of IEEE, Vol.57,pp.1211-1213,1969.
[5] D. Chauvin, G. Coussot and E. Dieulesaint, “Acoustic-surface-wave television filters,” Electronics Lett., Vol.7,pp.491-492,1971.
[6] “Special issue on surface acoustic wave devices and applications,” Proceedings of IEEE, Vol.64, No.5,pp.577-832,1976.
[7] D. Penunuri, “Recent progress in SAW filters at GHz frequencies,” 1997 IEEE MTT-S Digest, pp.169-172, 1997.
[8] M. Ueda, O. Kawachi, K. Hashimoto, O. Ikada and Y. Satoh , “Low loss ladder type SAW filter in the range of 300 to 400MHz,” FUJITSU limited. Kawasaki, JAPAN and FUJITSU laboratories ltd, JAPAN .
[9] K. Hashimoto, M. Ueda, O. Kawachi, H. Ohmori, O. Ikada, H. Uchishiba, T. Nishihara, and Y. Satoh, “Development of ladder type SAW RF filter with high sharp factor,” FUJITSU limited. Kawasaki, JAPAN and FUJITSU laboratories ltd, JAPAN.
[10] H. Fukushima, N. Hirasawa, M. Ueda, H. Ohmori, O. Ikata, Y.Satoh, “A study of SAW antenna duplexer for mobile application,” Proceedings of IEEE Ultrasonics Symposium, Vol. 1 , pp.9-12, 1998.
[11] O. Ikata, T. Nishihara, Y. Satoh, H. Fukushima, N. Hirasawa, “A design of antenna duplexer using ladder type SAW filters,” Proceedings of IEEE Ultrasonics Symposium, Vol. 1, pp.1-4, 1998.
[12] R.Weigel, K. Weigenthaler, R. Dill, I. Schropp, “A 900 MHz ladder-type SAW filter duplexer,” IEEE Microwave Symposium Digest, Vol. 2 , pp.413-416, 1996.
[13] B. Drafts, “Acoustic wave technology sensors,” IEEE Transactions on Microwave Theory and Techniques, Vol. 49, pp.795-802, April 2001.
[14] F.Josse, F. Bender, R. W. Cernosek, K. Zinszer, “Guided SH-SAW sensors for liquid-phase detection,” Proceedings of the 2001 IEEE International Frequency Control Symposium and PDA Exhibition, pp.454-461, 2001.
[15] R. Weigel, B. Bader, G. Fischerauer, P. Russer, “IIDT-type low-loss SAW filters used in wideband cellular radio systems,” Processing of IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Vol. 2 , pp.722-725, 1993.
[16] Hyun-Hak Kim, Kyung-Yong Kim, Jong-Hwan Lee, Jong-Myung Woo, “Surface-mounted chip dielectric ceramic antenna for PCS phone,” ISAPE 2000. 5th International Symposium on Antennas, Propagation and EM Theory, pp582-585, 2000.
[17] J. F. Shackelford, Introduction to materials science for engineers, 4th Ed., Prentice-Hall, Inc., New Jersey, 1996.
[18] E. A. Gerber and A. Ballato, Precision Frequency Control, Vol.1, Academic Press, Inc., New Jersey, 1985.
[19] 吳朗,「電子陶瓷:壓電陶瓷」,全欣資訊圖書,1994。
[20] Ken-ya Hashimoto, “Surface acoustic wave devices in telecomm-unications,” Springer-Verlag Berlin Heidelberg, 2000 .
[21] Colin Campbell, Surface acoustic wave devices for mobile and their signal processing applications, Academic Press, Inc., 1989.
[22] 1998/1999 Product Catalog, SAWTEK Inc., 1998
[23] K. Hashimoto, M. Yamaguchi, G. Kovacs, K. C. Wagner, T. Ruile, R. Weigel, “Effects of bulk wave radiation on IDT admittance on 〖42〗^。YXLiTaO3,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 48 Issue.5, pp1419-1425, Sept. 2001.
[24] O. Kawachi, G.Endoh, M. Ueda, “Optimum cut of LiTaO3 for high performance leaky surface acoustic wave filters,” Proceedings of IEEE Ultrasonics Symposium, 1996.
[25] K. Hashimoto, M. Yamaguchi, S. Mineyoshi, O. kawachi, M. ueda, G. Endoh, O. Ikata, “Optimum leaky-SAW cut of LiTaO3 for minimised insertion loss devices,” Proceedings of IEEE Ultrasonics Symposium, 1997.
[26] C. K. CAMPBELL, Surface acoustic wave devices for mobile and wireless communications, Academic press, Inc, 1998.
[27] R. H. Tancrell and M. G. Holland, “Acoustic surface wave filter,” Proceedings of IEEE,Vol.59,pp.393-409,1971.
[28] W. R. Smith, H. M. Gerard, J. H. Collins, T. W. Reeder, H. J. Shaw, “Analysis of interdigital surface wave transducers by use of an equivalent circuit model,” IEEE Trans. On Microwave Theory and Techniques, Vol.MTT-17, pp.856-864, 1969 .
[29] W. P. Mason, Electromechanical transducers and wave filters, van Nostrand-Reinhold, 2nd Edition, Princetion, New Jersey, pp.201-209, 399-409, 1948 .
[30] G. A. Coquin and W. R. Jones, “Analysis of the excitation and detection of piezoelectric surface waves in quartz by means of surface electrodes,” J. Acoustic. Soc. Amer., Vol. 41, pp. 921-939, 1967 .
[31] W. Richard Smith, Henry M. Gerard and William R. Jones, “Analysis and design of dispersive interdigital surface-wave transducers,” IEEE Trans. On Microwave Theory and Techniques, Vol. MTT-20, No.7, pp.458-471, 1972 .
[32] J. J. Campbell and W. R. Jones, “A method for estimating optimal crystal cuts and propagation direction for excitation of piezoelectric surface waves,” IEEE Trans. On Sonics and Ultrasonics, Vol. SU-15, pp.209, 1968 .
[33] C. Lardat, C.Maerfeld and P. Tournois, “Theory and performance of acoustical dispersive surface wave delay lines,” Proc. IEEE, Vol. 59, pp.355-368, 1971 .
[34] Felix M. Nyffeler, “Rigorous derivation of the Mason equivalent circuit parameters from coupled mode theory,” Proceedings of IEEE, Ultrasonics. Symposium., pp.91-96, 1986.
[35] H.H. Ou, N. Inose, N. Sakamoto, “Improvement of ladder-type SAW filter characteristics by reduction of inter-stage mismatching loss,” Proceedings of IEEE Ultrasonics Symposium, Vol. 1, pp.97-102, 1998.
[36] Clemens C. W. Rupple, Tor A. Fjeldly, Advances in surface acoustic wave technology, systems and applications, Vol. 1, 2000.
[37] Tomoyo Komatsu, Yasutomo Tanaka, Ken-ya Hashimoto, Tatsuya Omori, Masatsune Yamaguchi, “Design of Narrow Bandwidth Ladder-Type Filter with Sharp Transition Bands Using Mutually Connected Resonator Elements,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control ,Vol. 50, No. 7, pp.1451-1456, 2009.
[38] O. Ikata, T. Miyashita, T. Matsuda, T. Nishihara, Y. Satoh, “Development of low-loss band-pass filters using SAW resonators for portable tele-phones,” Proceedings of IEEE Ultrasonics Symposium, Vol. 1, pp.111-115, 1992.
[39] Murata Datasheet of SAW Device, SAW Single Filter for Band7 / Unbalanced / 5pin /1109 Murata PN: SAFFB2G53KA0F0A.
[40] Murata Datasheet of SAW Device, SAW FILTER FOR GPS/GLONASS Murata part number: SAFFB1G58KA0F0A.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top