跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 16:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王聖智
研究生(外文):WANG, SHENG-CHIH
論文名稱:高溫雷達波吸收材料製備及特性之研究
論文名稱(外文):Preparation and Characterization of High Temperature Radar Wave Absorbing Materials
指導教授:黃其清李金樹李金樹引用關係
指導教授(外文):HWANG, CHYI-CHINGLI, JIN-SHUH
口試委員:林正雄陸開泰葉早發黃其清李金樹
口試委員(外文):LIN, CHENG-HSIUNGLU, KAI-TAIYEH, TSAO-FAHWANG, CHYI-CHINGLI, JIN-SHUH
口試日期:2017-05-08
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:99
中文關鍵詞:微波吸收碳化矽奈米碳管高溫
外文關鍵詞:Microwave absorbingsilicon carbidemulti-walled carbon nanotubehigh temperature
相關次數:
  • 被引用被引用:4
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
近年來,先進電磁波吸收材料之研發與運用相當受到矚目。目前趨勢由單一成份吸波劑朝向複合成份及結構發展,以期更能滿足輕、薄、寬、強之需求。本研究運用噴塗技術製備β相碳化矽粉末和矽樹脂組成的複合材料,添加少量的多壁碳納米管(0- 0.2 wt %),製備高溫微波吸收材,藉由熱重分析(TGA),X射線繞射儀(XRD)和掃描式電子顯微鏡(SEM)分析其熱穩定性及觀察微結構形貌,並以微波自由空間量測法(Free space measurement method)針對8.2- 12.4 GHz(X頻段)進行電磁參數(ε'、ε''、 μ'、μ'')量測、分析在常溫至450℃的微波吸收效能。熱重分析結果顯示常溫至480℃有良好的熱穩定性,加熱過程,複合材料仍然保持其外觀和微觀結構;在室溫下的最佳組成為含有50 wt%的碳化矽添加0.2 wt %多壁奈米碳管,厚度1.6 mm之複合材料在9.72 GHz具有-58.9 dB的最大反射損耗,低於-10 dB的吸收帶寬約為2 GHz;在450℃的高溫下,吸收峰位於10.30 GHz,反射損耗為-11.3 dB,反射損耗小於-10 dB的吸收帶寬維持2 GHz。
Eelectromagnetic (EM) wave absorbing materials have been widely used in the commercial and military applications for years. More recently, considerable efforts have been made toward the development of the hybrid composition and structure microwave absorbers to meet the requirements such as strong absorption characteristics and wide absorption frequency, lightweight and anti-oxidation. A flexible composite consisting of up to 50 wt% β-phase silicon carbide powder and silicon resin, added with a little extra amount of multi-walled carbon nanotube (~1 wt%), was prepared via spray coating technique to manufacture the high temperature microwave absorber. The as-prepared composite was characterized by Thermal gravimetric analysis (TGA), X-ray Diffraction(XRD) and scanning electron microscope (SEM). The microwave absorbing performance was evaluated within the range of 8.2-12.4 GHz (X band) at elevated temperatures up to 450 ℃. Judging form TG analysis, the composite revealed a good thermal stability due to a slight weight loss of <5% as the temperature at 480 ℃. After heating, the composite still remained its appearance and microstructure. The optimal results at roomtemperature showed that the 1.6 mm-thick composite contained 50 wt% SiC and 0.2 wt% CNT possessed a maximum reflection loss of -58.9dB; in addition, the absorption bandwidth less than -10 dB was around 2 GHz. At the high temperature of 450 ℃, the absorption peak located at 10.30 GHz with a reflection loss of -11.3 dB; moreover, the absorption bandwidth with a reflection loss less than -10 dB was 2 GHz.
目錄

誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 vii
圖目錄 viii
1. 緒論 1
1.1. 概述 1
1.2. 研究動機 2
1.3. 研究目的 4
1.4. 研究流程 4
2. 文獻回顧 6
2.1. 電磁波基礎理論 6
2.2. 電磁波吸收材料吸收機制 16
2.2.1. 以吸收原理區分 23
2.2.2. 以成型方式區分 24
2.2.3. 複合式吸收劑粉體結構 25
2.3. 高溫電磁波吸收材料 28
2.3.1. 碳吸收劑 29
2.3.2. 碳化矽吸收劑 31
2.3.3. 塗覆型高溫吸波材 34
3. 實驗 37
3.1. 實驗藥品 37
3.2. 實驗機儀器設備 37
3.3. 儀器分析原理與測試方法 38
3.3.1. X光繞射分析(XRD) 38
3.3.2. 掃描式電子顯微鏡(SEM) 38
3.3.3. 熱重分析(TGA) 38
3.3.4. 向量網路分析儀(VNA) 39
3.4. 實驗程序 42
3.4.1. 實驗流程 42
3.4.2. 實驗條件規劃 45
4. 結果與討論 47
4.1. 吸波複材SEM微結構觀測 47
4.2. 吸波複材XRD圖譜分析 50
4.3. 吸波複材TGA圖譜分析 53
4.4. 吸波片電磁特性分析 57
4.5. 吸波片反射損失分析 67
5. 結論 82
參考文獻 83
發表著作 88
自傳 89


[1] 胡傳祈,隱身塗層技術,化學工業出版社,北京,第192-193頁,2004。
[2] 邢麗英、蔣詩才、李斌太、顏悅、何山,隱身材料,新文京開發出版股份有限公司,台北縣,第2頁,2006。
[3] Ding, Dong-Hai, Luo, Fa, Zhou, Wan-Cheng, Shi, Yi-Min and Zhou, Liang. “ Research status and outlook of high temperature radar absorbing materials ” Journal of Inorganic Materials. Vol. 29 No. 5, pp.461-469, 2014.
[4] 剛村迪夫,淺談電磁干擾,全華科技圖書,台北,第89-98頁,2004。
[5] 劉順華,劉軍民,董星龍,段玉平,電磁波屏蔽及吸波材料,第二版,化學工業出版社,北京,第11-16頁,2013。
[6] 林振漢,工程電磁學,高立圖書有限公司,台北,第96-129頁,1997。
[7] 張連璧,電磁脈衝學與電磁屏蔽,五南圖書出版股份有限公司,台北,第239-251頁,2007。
[8] 張維群,電磁學,全威圖書有限公司,台北,第389-423頁,2006。
[9] 吳清水,曾振東,應用電磁學,全華科技圖書股份有限公司,台北,第3.23 – 3.29頁,1997。
[10] 余寄仲,柯文淞,“電磁波吸收及屏蔽材料介紹”,工業材料,第178期,第107-112頁,2001。
[11] 唐敏注,柯文淞,黃玉婷,“漫談電磁干擾抑制材料”,臺灣磁性技術協會會訊,第48期,第18-30頁,2008。
[12] Pozar, David M., Microwave engineering, Third Edition, John Wiley & Sons, Inc., United States of America, pp. 63-64, 2005.
[13] Paul, Clayton R., Introduction to electromagnetic compatibility, Second Edition, John Wiley & Sons, Inc., Canada, pp. 23-25, 2006.
[14] 卓聖鵬,EMC的基礎和實踐,全華科技圖書股份有限公司,台北,第3.3 – 3.4頁,2001。
[15] 盧廷鉅,“The composite materials technology demand and application for structure using”,工業材料雜誌,第254 期,第85-96頁,2008。
[16] 柯揚船,聚合物-無機奈米複合材料,材料科學與出版中心,北京,第6-35頁,2002。
[17] 趙霖智、胡社軍、李偉善、何琴玉、陳俊芳、汝強,“吸波材料的吸波原理及其研究進展”,現代防禦技術,第35卷,第1期,第27-31頁,2007。
[18] 陳雪剛、葉瑛、程繼鵬,“電磁波吸收材料的研究進展”,無機材料學報,第26卷,第5期,第449-457頁,2011。
[19] 趙東林、周萬城,“結構吸波材料及其結構型式設計”,兵器材料科學與工程,第20卷,第6期,第53-57頁,1997。
[20] 鄭少生、紀松,功能材料概論-性能、制備與應用,化學工業出版社,北京,第189-201頁,2012。
[21] 孟建華、楊桂琴、顏樂美、王秀宇,“吸波材料研究進展",磁性材料及器件,第35卷,第4期,第11-14頁,2004。
[22] Qing, Yu-Chang, Zhou, Wan-Cheng, Luo, Fa and Zhu, Dong-Mei. “Optimization of electromagnetic matching of carbonyl Iron/BaTiO3 composites for microwave absorption” , Journal of Magnetism and Magnetic Materials, Vol. 323, pp. 600-606, 2011.
[23] 馮永寶、丘泰、張明雪、李曉雲、沈春英, “塗覆型雷達吸波材料研究進展”,材料導報,第17卷,第12期,第56-58頁,2003。
[24] 丁冬海、羅發、周萬城、史毅敏、周亮,“高温雷達吸波材料研究現狀與展望”,無機材料學報,第29卷,第5期,第461-469頁,2014。
[25] Cao, Mao-Sheng, Song, Wei-Li and Hou, Zhi-Ling. “The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites”. Carbon, Vol. 48 No. 3, pp.788-796, 2010.
[26] Kou, Hua-Min, Zhu, Yong and Chen, Min-Gxia. “Microwave absorbing performance of silica matrix composites reinforced by carbon nanotubes and carbon fiber”. Int. J. Appl. Ceram. Technol., Vol. 10, No. 2, pp. 245-250, 2012.
[27] Qing, Yu-Chang, Zhou, Wan-Cheng and Luo, Fa. “Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber”. Carbon, Vol. 48, No. 14, pp. 4074-4080, 2010.
[28] Xie, Wei, Cheng, Hai-Feng and Kuang, Jia-Cai, “Effect of heating rate on the complex permittivity of hollow-porous carbon fibers”, Journal of Inorganic Materials, Vol. 26, No. 9, pp. 939-943, 2011.
[29] Sun, Liang-Kui, Cheng, Hai-Feng and Chu, Zeng-Yong. “Preparation and properties of C/SiO2 coaxial fibers”. Journal of Inorganic Materials, Vol. 24, No. 2, pp. 310-314, 2009.
[30] Yan, Jia, Chu, Zeng-Yong and Cheng, Hai-Feng. “Microwave absorbing property of pre-oxidized PAN fibers carbonized in BCl3”. Journal of Inorganic Materials, Vol. 27, No. 8, pp. 813-816, 2012.
[31] Zhou, Wei, Xiao, Peng and Li, Yang. “Dielectric properties of BN modified carbon fibers by dip-coating”. Ceramics International, Vol. 39, No. 6, pp. 6569-6576, 2013.
[32] 李智敏、杜紅亮、羅發、蘇曉磊、周萬成,“碳化矽高温吸收劑的研究現狀”,稀有金屬材料與工程,第36卷,第3期,第94-99頁,2007。
[33] Feng, Gui-Ying, Fang, Xiao-Yong and Wang, Jun-Jun. “Effect of heavily doping with boron on electronic structures and optical properties of β-SiC”. Physica B, Vol. 405, No. 12, pp. 2625-2631, 2010.
[34] Liu, Hong-Sheng, Fang, Xiao-Yong and Song, Wei-Li. “Modification of band gap of β-SiC by N-doping”. Chinese Physics Letters, Vol. 26, No. 6, pp. 067101, 2009.
[35] Li, Zhi-Min, Shi, Jian-Zhang and Wei, Xiao-Hei. “First principles calculation of electronic structure for Al-doped 3C-SiC and its microwave dielectric properties”. Acta Phys. Sin., Vol. 61, No. 23, pp. 237103, 2012.
[36] Dou, Yan-Kun, Jin, Hai-Bo and Cao, Mao-Sheng. “Structural stability, electronic and optical properties of Ni-doped 3C–SiC by first principles calculation”. Journal of Alloys and Componds, Vol. 509, No. 20, pp. 6117-6122 , 2011.
[37] Ding, Dong-Hai, Zhow, Wan-Cheng and Zhang, Biao. “Complex permittivity and microwave absorbing properties of SiC fiber woven fabrics”. Journal of Materials Science, Vol.46, No. 8, pp. 2709-2714 , 2011.
[38] 周萬城、王婕、羅發、朱冬梅、黃智斌、卿玉長,“高溫吸波材料研究面臨的問題” ,中國材料進展,第8期,第12-22頁,2013
[39] 張清志、陳頤專、黃其清、李景民、洪耀勳,“碳化矽粉體之合成及其微波吸收特性研究” ,中正嶺學報,第39卷,第2期,2010。
[40] Xie, Song, Jin, Guo-Qiang, Meng, Shuai, Wang, Yun-Wei, Qin, Yong and Guo, Xiang-Yun. “Microwave absorption properties of in situ grown CNTs/SiC composites” . Journal of Alloys and compounds, Vol. 520, pp.295-300, 2012.
[41] 邱文聖,“碳化矽/奈米碳管複合材料高溫電磁特性及其吸波效應研究”,碩士論文,明新科技大學化學工程與材料科技研究所,新竹, 2015。
[42] 梁文凡,“應用共振腔微擾法研究鐵基奈米複合材料之微波特性",碩士論文,逢甲大學,台中,第9-16頁,1998。
[43] 願繼友、杜娟、許瑋,膠黏劑與塗料,中國林業出版社,北京,第262-263頁,2012。
[44] Jasmine Keuk, “ Polysiloxane Modified Polyisocyanates for Use in Coatings” , US Patent: 20140275410A1, U.S.A., 2014.
[45] 徐國財、張立德、張勁燕,奈米複合材料,五南圖書出版股份有限公司,台北,第529-530頁,2003。
[46] 劉順華,劉軍民,董星龍,段玉平,電磁波屏蔽及吸波材料,第二版,化學工業出版社,北京,第189-193頁,2013。
[47] Liu, Li-Dong, Duan, Yu-Ping, Ma, Li-Xin, Liu, Shun-Hua and Yu, Zhen,“Mechanical and tribological properties of Ni/Al multilayers-A molecular dynamics study”, Applied Surface Science, Vol. 257, pp. 842- 846, 2010.
[48] Bowler Nicola. “Designing dielectric loss at microwave frequencies using muti-layered filler particles in a composite”. IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 13, No. 4, pp. 703- 711, 2006.
[49] 劉順華,劉軍民,董星龍,段玉平,電磁波屏蔽及吸波材料,第二版,化學工業出版社,北京,第311-314頁,2013。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top