跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 05:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭兆為
研究生(外文):Cheng, Chao-Wei
論文名稱:松山機場航班後推作業模擬分析之研究
論文名稱(外文):Simulation analysis of flight pushback operations in Songshan Airport
指導教授:盧華安盧華安引用關係
指導教授(外文):Lu, Hua-An
口試委員:趙清成林秀芬
口試委員(外文):ZHAO, Ching-ChengLIN, Xiu-Fen
口試日期:2018-07-24
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:航運管理學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:82
中文關鍵詞:後推作業田野調查配適分析系統模擬
外文關鍵詞:PushbackField investigationFitness analysisSystem simulation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:313
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:1
由於飛機在停機坪內準備要離場時,不能自行倒退向後滑行,需要靠牽引車來將飛機由停機坪中後推至滑行道,為了避免造成飛機與飛機之間的衝突碰撞,飛機需要執行後推作業時,需要獲得塔台管制員的核准,才能開始進行後推。本研究將重點放在機場後推作業的指派,來增加其機場的作業效率。而塔台管制員要如何決定哪一架飛機能夠進行後推作業的順序指派是相當重要的一環,如果指派的順序不佳,可能會造成後推路徑、滑行路徑上有其他架飛機阻礙,影響其移動,而導致航班離場的延遲,使得飛機在場場內消耗過多燃料,空氣污染增加,也會造成乘客的負面情緒,造成航空公司不必要的成本。
本研究以松山機場為研究目標,深入了解松山機場作業特性,以及塔台管制員對於航班後推順序指派的依據,並且透過實際的後推作業,了解後推作業在時間上是否與其他因素關聯,且研擬出適合的指派策略,期望提高後推作業效率。
實地前往台北松山機場進行田野調查,將飛機後推作業的各項時間依照階段性、停機坪位置、機型分類記錄下來,使用Arena軟體對調查資料進行分配模式之分析,並且使用Arena中模組系統建構模擬機場作業系統,以及建議兩種後推指派策略的模擬系統,再將分配模式之分析結果套入至模擬系統當中,來對真實機場進行評估
研究結果顯示兩種策略皆能夠縮短後推作業時間,提升後推效率,不過以統計方法檢定來看,對於實際機場後推作業系統沒有明顯差異,此研究建構之模擬系統,對於航班不多的機場可能沒有太大的影響,未來有機會以忙碌機場為目標,可能會有較好結果。
Since the aircraft is not ready to leave backwards when it is ready to leave the apron, it is necessary to rely on the tractor to push the aircraft from the apron to the taxiway. In order to avoid collision between the aircraft and the aircraft, the aircraft needs to be executed. When pushing back the job, it needs to be approved by the tower controller to start pushing back. This study will focus on the assignment of post-flight operations at the airport to increase the efficiency of its airport operations. How the tower controller decides which aircraft can carry out the sequence assignment of the post-push operation is a very important part. If the order of assignment is not good, it may cause hindrance paths and other aircraft obstacles on the taxi path, affecting them. The delay in moving, which leads to the departure of the flight, causes the aircraft to consume too much fuel in the field, and the increase in air pollution will also cause negative emotions for passengers, resulting in unnecessary costs for the airline.
This study takes Songshan Airport as the research objective, and deeply understands the operation characteristics of Songshan Airport, as well as the basis of the tower controller's assignment of flight post-pushing order, and through the actual post-pushing operation, whether the post-pushing operation is related to other factors in time. And to develop a suitable assignment strategy, it is expected to improve the efficiency of the pushback operation.
Field trip to Taipei Songshan Airport for field investigation, recording the time of the aircraft after the operation according to the stage, apron location, model classification, using the Arena software to analyze the distribution data of the survey data, and use the Arena module The system constructs a simulated airport operating system, and proposes a simulation system with two post-push assignment strategies, and then integrates the analysis results of the distribution model into the simulation system to evaluate the real airport.
The research results show that both strategies can shorten the post-pushing time and improve the post-push efficiency. However, in terms of statistical method verification, there is no significant difference between the actual airport post-push operating system. The simulation system constructed in this study is not much for flights. The airport may not have much impact, and the opportunity to have a busy airport in the future may have better results.
謝辭 I
摘要 II
英文摘要 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究範圍 3
1.4 研究方法與流程 5
第二章 文獻回顧 7
2.1 機場地面系統管理 7
2.2 控制後推流量流速 10
2.3 指派後推作業時間窗 (TIME WINDOW) 12
第三章 後推作業規範與實務調查 13
3.1 解析飛機後推作業 13
3.2 空中交通管制 14
3.2.1 管制員分類 14
3.2.2 飛航管制作業 15
3.3 臺北松山機場場內規範與特性 16
3.3.1 臺北松山機場簡介 16
3.3.2 松山機場停機坪安全管理規定 20
3.3.3 松山機場作業特性 21
第四章 松山機場調查報告分析 25
4.1 松山機場塔台實地調查 25
4.2 資料分析 27
4.2.1 不同階段分析 28
4.2.2 同機型各階段分析 29
4.2.3 不同停機坪各階段分析 31
4.3 分析結論 33
第五章 機場後推作業系統模擬 34
5.1 ARENA簡介 34
5.2 松山機場後推作業現況模擬系統之建構 35
5.2.1 實證資料輸入 36
5.2.2 現況模擬系統之建構 38
5.2.3 模式確認與有效性 49
5.3 建議指派策略 51
5.3.1 依停機坪位置優先順序指派 51
5.3.2 先到先後推後依停機坪位置指派策略 58
5.4 建議後推指派策略比較 64
第六章 結論與建議 66
6.1 結論 66
6.2 建議 67
參考文獻 68
附錄一 現況模擬系統模組 70
附錄二 停機坪位置優先順序指派策略模組 71
附錄三 先到先後推後依停機坪位置指派策略之模組 72
1. 楊雙雙、朱華慶 (2014),「航空器推出決策的優化研究」,武漢理工大學學報(交通科學與工程版),第三十八卷,第1期。
2. 劉麗華、張亞平、邢志偉、程紹武 (2016),「基於離散差分進化的飛機推出決策優化」,交通運輸系統工程與信息,第十六卷,第6期,196-203頁。
3. 董晉偉 (2006),「定期航運經營之模擬分析~以亞歐航線為例」,國立海洋大學航運管理所碩博士論文。
4. Balakrishna, P., Ganesan, R., Sherry, L. (2010), “Accuracy of reinforcement learning algorithms for predicting aircraft taxi-out times: A case-study of Tampa Bay departures”, Transportation Research Part C: Emerging Technologies, Vol. 18, No. 6, pp. 950-962.
5. Bubalo, B., Schulte, F. and Voss, S. (2017), “Reducing airport emissions with coordinated pushback processes: A case study” 8th International Conference in Computational Logistics, Proceedings LNCS-10572, pp. 572-586.
6. Burgain, P., Pinon, J.O., Feron, E., Clarke, J.P. and Mavris, D.N. (2012), “Optimizing Pushback Decisions to Valuate Airport Surface Surveillance Information”, IEEE Transactions On Intelligent Transportation Systems, Vol. 13, No. 1.
7. Cheng, Y. (1997), “Solving Push-out Conflicts in Apron Taxiways of Airports by a Network-Based Simulation”, Computers Ind. Engng, Vol. 34, No. 2, pp. 351-369.
8. Coupe, W.J., Milutinovic, D., Malik, W. and Jung Y. (2015), “Optimization of Push Back Time Windows That Ensure Conflict Free Ramp Area Aircraft Trajectories”, 15th AIAA Aviation Technology, Integration, and Operations Conference.
9. Coupe, W.J., Milutinovic, D., Malik, W. and Jung Y. (2016), “A Mixed Integer Linear Program for Real-Time Computing the Optimal Push Back Time Windows”, 16th AIAA Aviation Technology, Integration, and Operations Conference.
10. Desai, J., Lian G., and Srivathsan, S. (2017), “A hybrid penalty-based dynamic policy for effective departure pushback control”, 67th Annual Conference and Expo of the Institute of Industrial Engineers, pp. 782-787.
11. Diana, T. (2013), “An application of survival and frailty analysis to the study of taxi-out time: A case of New York Kennedy Airport”, Journal of Air Transport Management, Vol. 26, pp. 40-43.
12. Khadilkar, H. and Balakrishnan, H. (2012), “Estimation of aircraft taxi fuel burn using flight data recorder archives”, Transportation Research Part D: Transport and Environment, Vol. 17, No. 7, pp. 532-537.
13. Koeners, G.J.M. and Rademaker, G.J.M. (2011), “Analyze possible benefits of real-time taxi flow optimization using actual data”, Digital Avionics Systems Conference (DASC), 2011 IEEE/AIAA 30th, pp. 6D5-1-6D5-11.
14. Liu, L., Zhang, Y., and Wei, Y. (2013), “A pushback slot allocation equilibrium model based on game theory”, Advanced Materials Research, Vol. 807-809, pp. 2858-2862.
15. McFarlane1, P. and Balakrishnan, H. (2016), “Optimal Control of Airport Pushbacks in the Presence of Uncertainties”, American Control Conference.
16. Meier, F.D., Kalms, T., Fricke, H. and Schultz, M. (2013), “Modelin g Aircraft Pushback Trajectories for Safe Operations”, ATACCS’2013 | Research Papers.
17. Mori, R. (2014), “Optimal pushback time with existing uncertainties at busy airport”, 29th Congress of the International Council of the Aeronautical Sciences.
18. Mori, R. (2015), “Improvement of pushback time assignment algorithm via stochastic optimization”, 5th SESAR Innovation Days.
19. Mori, R. (2016), “Improvement of pushback time assignment under uncertainties”, 30th Congress of the International Council of the Aeronautical Sciences.
20. Roling P.C., and Visser H.G. (2008), “Optimal airport surface traffic planning using mixed-integer linear programming”, International Journal of Aerospace Engineering, Vol. 2008, No. 1,
21. Sandberg, M., Simaiakis, I., Balakrishnan, H., Reynolds, T.G. and Hansman, R.J. (2014), “A Decision Support Tool for the Pushback Rate Control of Airport Departures”, IEEE Transactions on Human-Machine Systems, Vol. 44, No. 3, pp. 416–421.
22. Simaiakis, I., Khadilkar, H., Balakrishnan, H., Reynolds, T.G. and Hansman, R.J. (2014), “Demonstration of reduced airport congestion through pushback rate control”, Transportation Research Part A: Policy and Practice 66, 251-267.
23. Stergianos, C., Atkin J., Schittekat, P., Nordlander, T.E., Gerada, C and Morvan, H. (2015), “Pushback delays on the routing and scheduling problem of aircraft”, Lecture Notes in Management Science, Vol. 7, pp. 34–40.
24. Tang, X.W. (2010), “Rearch on Aircraft Pushback Procedure in Busy Airport”, International Conference on Optoelectronics and Image Processing.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top