跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/22 18:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:姚勝凱
研究生(外文):Yao, Sheng-Kai
論文名稱:具忙音頻道多速率載波偵測無線環境之傳輸速度感知功率控制協定
論文名稱(外文):Rate-aware Power Control Mechanisms with Busy-tone Channels in Multi-rate Carrier-sensing Wireless Environments
指導教授:林亭佑林亭佑引用關係
指導教授(外文):Lin, Ting-Yu
口試委員:張薰文李程輝
口試委員(外文):Chang, Hsun-WenLee, Tsern-Huei
口試日期:2017-09-07
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:27
中文關鍵詞:功率控制無線多速率載波偵測忙音頻道
外文關鍵詞:Power ControlRate-awareBusy-toneMulti-rateCarrier-sensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
隨著無線行動網路快速的發展,使用無線網路的設備數量有爆炸性的成長,使得無線環境中傳播著非常巨大的資料流量,如何避免傳送的封包發生碰撞成為了非常重要的議題。IEEE 802.11使用CSMA/CA機制來避免碰撞發生,更進一步使用了RTS/CTS來保護傳輸中的資料。然而無線網路的環境中,傳輸的成功與否和接收端所收到的訊號強度及所受干擾(SINR)有關,大多數成功的傳輸對於使用最大傳輸功率是不需要的,使用多餘的發射功率在進行傳輸時,反而造成了資源的浪費,更造成鄰近節點的干擾,再加上RTS/CTS裡的virtaul carrier sense的特性,可能造成嚴重的暴露節點問題,所以應當考慮接收端的狀態來限制傳輸功率。
因此在本論文中,我們提出了一個速率及功率控制演算法,打破傳統傳與不傳的二元決策(Binary Decision),以接收端為中心,根據各傳送速率所需的SINR及目前所收到的訊號SINR,藉由busy-tone來限制周圍的傳輸,另一傳送端接收來自busy tone的能量訊號後,推算出可使用多少功率傳輸而不影響其他node的接收,最後根據傳輸的情形調整速率,增加頻道的空間使用率,進而增加整體網路的吞吐量。
我們使用NS3中的 Wi-Fi model,以IEEE 802.11ac為基礎模擬我們設計的演算法,分析不同節點密度下網路的吞吐量,並將結果與IEEE 802.11ac無線網路環境進行比較。經由實驗結果可以發現,我們所提出的演算法可以隨著現在的環境變化來動態地調整傳輸功率,並維持良好的網路吞吐量及碰撞率,同時具有可增加多組同時傳輸的特性。
With the rapid development of wireless mobile networks, the number of wireless network equipment also grows exponentially. Considering an enormous amount of data traffic, packet collision avoidance has become an important yet challenging issue. IEEE 802.11 uses CSMA/CA mechanism to avoid collisions, and RTS/CTS is further used to protect the data being transmitted. However, in such wireless networks, successful transmission depends heavily on the perceived SINR (Signal-to-Interference-and-Noise Ratio) at the receiver. We observe that using maximum transmission power doesn’t always yield the best result. Rather, it leads to redundant transmitter power, wasting energy resources, and even causing a greater interference to neighboring nodes. Coupled with RTS/CTS virtual carrier sense, the IEEE 802.11 protocol suffers from serious exposed terminal problems. As such, we suggest to take the environmental status of the receiver into account, and properly limit transmission power that affects neighboring nodes.
In this thesis, unlike traditional binary decision of transmitting or deferring, we propose a rate-aware power control algorithm which works as follows. Receiver uses the current transmission rate (from transmitter) to calculate the minimum required SINR for a successful transmission, and sends busy-tone signal to the surrounding nodes. The surrounding nodes utilize the busy-tone signal to estimate how much power can be used without affecting the reception of other nodes and adjust their transmission power accordingly. Our proposed algorithm attempts to maximize the channel’s spatial usage, thus effectively increasing the overall network throughput.
We adopt the Wi-Fi model in NS3 to simulate our proposed algorithm based on IEEE 802.11ac. We conduct experiments for different node densities, analyze the network throughput and compare the performance with other existing algorithms. The experimental results show that our proposed algorithm can dynamically adjust the transmission power to adapt to the environmental changes while maintaining excellent network throughput and low collision rate. Furthermore, it effectively increases the number of simultaneous successful transmissions.
摘 要 I
ABSTRACT II
誌 謝 III
目 錄 IV
表 目 錄 V
圖 目 錄 VI
一、緒論 1
二、相關文獻 3
三、演算法設計 5
3.1 RPCB整體架構 5
3.2 RPCB演算法細節 7
3.3 NS3 wifi model 9
3.4 RPCB in NS3 11
3.5 CSMA/ECA in NS3 14
3.6 Future Work on NS3 15
四、實驗呈現 16
4.1 環境設定 16
4.2 Scenario 1:Exposed Terminal & Fairness 16
4.3 Scenario 2:Hidden Terminal & Fairness 20
4.4 Scenario 3:節點密度 23
五、結論 24
參考文獻 25
[1] Kyunghan Lee, Joohyun Lee, Yung Yi, Injong Rhee, and Song Chong "Mobile Data Offloading: How Much Can WiFi Deliver?" IEEE/ACM Transactions on Networking, pp. 536-550, November 2012.
[2] SeungSeob Lee, and SuKyoung Lee, “User-Centric Offloading to WLAN in WLAN/3G Vehicular Networks,” Wireless Personal Communications, pp. 1925-1940, June 2013.
[3] Byoung Hoon Jung, Nah-Oak Song, and Dan Keun Sung, “A Network-Assisted User-Centric WiFi-Offloading Model for Maximizing Per-User Throughput in a Heterogeneous Network,” IEEE Transactions on Vehicular Technology, pp. 1940-1945, October 2013.
[4] Pphuong Luong, Tri Minh Nguyen, Long Bao Le, Ngoc-Dũng Đào, and Ekram Hossain "Energy-Efficient WiFi Offloading and Network Management in Heterogeneous Wireless Networks," IEEE Access, vol. 4, pp. 10210-10227, 2016.
[5] Sanjay Goyal, Pei Liu, Ozgur Gurbuz, Elza Erkip, and Shivendra Panwar, “A distributed MAC protocol for full duplex radio,” In Proc. Signals, Systems and Computers, November. 2013.
[6] Nikhil Singh, Dinan Gunawardena, Alexandre Proutiere, Božidar Radunovi, Horia Vlad Balan, and Peter Key, “Efficient and Fair MAC for Wireless Networks with Self-interference Cancellation,” In Proc. Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), May 2011 .


[7] Wooyeol Choi, Hyuk Lim and Ashutosh Sabharwal, ” Power-Controlled Medium Access Control Protocol for Full-Duplex WiFi Networks,” IEEE Transactions on Wireless Communications, pp. 3601-3613, March 2015.
[8] Alessio Zappone, Luca Sanguinetti, Giacomo Bacci, Eduard Jorswieck, and Mérouane Debbah, " Energy-Efficient Power Control: A Look at 5G Wireless Technologies," IEEE Transactions on Signal Processing, vol. 64, pp. 1668-1683, November 2015.
[9] Ke Wang, Teck Yoong Chai, Wai-Choong Wong “An On-demand Rate-aware Joint Power Control and Routing Scheme,” In Proc. IEEE Wireless Communications and Networking Conference (WCNC), April 2014.
[10] Daniel F. Macedo, Aldri L. dos Santos, Luiz Henrique Andrade Correia, José Marcos Nogueira, and Guy Pujolle, “Transmission power and data rate aware routing on wireless networks,” Elsevier Computer Networks, vol. 54, pp. 2979-2990, December 2010.
[11] Suhua Tang, Hiroyuki Yomo, Akio Hasegawa, Tatsuo Shibata and Masayoshi Ohashi, “Joint Transmit Power Control and Rate Adaptation for Wireless LANs,” Wireless Personal Communications, vol. 74, pp. 469-486, January 2014.
[12] Wang Ke, “Reinforcement-learning-based Cross Layer Design in Mobile Ad-hoc Networks,” Doctor of Philosophy National University of Singapore, 2015.
[13] Boris Bellalta, “IEEE 802.11ax: High-Efficiency WLANs,” IEEE Wireless Communications, vol. 23, pp. 38-46, March 2016.
[14] Fuad M. Abinader, Erika P.L. Almeida, Fabiano S. Chaves, Andre M. Cavalcante, Robson D. Vieira, Rafael C.D. Paiva, Angilberto M. Sobrinho, Sayantan Choudhury, Esa Tuomaala, Klaus Doppler and Vicente A. Sousa, “Enabling the coexistence of LTE and Wi-Fi in unlicensed bands,” IEEE Communications Magazine, vol. 52, pp. 54-61, November 2014.
[15] Luis Sanabria-Russo, Azadeh Faridi, Boris Bellalta, Jaume Barcelo and Miquel Oliver, “Future evolution of CSMA protocols for the IEEE 802.11 standard,” In Proc. IEEE International Conference on Communications (ICC), June 2013.
[16] Daniel Camps-Mur, Andres Garcia-Saavedra, and Pablo Serrano, “Device-to-device communications with Wi-Fi Direct: overview and experimentation,” IEEE Wireless Communications, vol. 20, pp.96-104, July 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊