|
[1] S. Bulteau, M. El Khadiri, A Monte Carlo simulation of the flow network reliability using importance and stratied sampling, Technical Report, Institut de Recherche en Informa- tique et Systemes Aleatoires and Institut National de Recherche en Informatique et en Automatique, 3122 (1997). [2] S. Bulteau, M. El Khadiri, A Monte Carlo algorithm based on a state-space decompo- sition methodology for flow network reliability evaluation, Technical Report, Institut de Recherche en Informatique et Systemes Aleatoires and Institut National de Recherche en Informatique et en Automatique, 1012 (1996). [3] S. Bulteau, M. El Khadiri, A new importance sampling Monte Carlo method for a flow network reliability problem, Naval Research Logistics, 49 (2) (2002) 204-228. [4] R.C.H. Cheng, Variance Reduction Methods, Proceedings of the 18th Conference on Win- ter Simulation (1986) 60-68. [5] C. Cristian, Using Multi-stage and Stratied Sampling for Inferring Fault-Coverage Prob- ability, IEEE Transactions on Reliability 44 (4) (1995) 632-639. [6] H. Cancela and M.E. Khadiri, A Recursive Variance-reduction Algorithm for Estimating Communication-network Reliability, IEEE Transactions on Reliability 44 (4) (1995) 595- 602. [7] H. Cancela and M.E. Khadiri, Series-parallel Reductions in Monte Carlo Network Relia- bility Evaluation, IEEE Transactions on Reliability 47 (2) (1998) 159-164. [8] H. Cancela and M.E. Khadiri, The Recursive Variance-reduction Simulation Algorithm for Network Reliability Evaluation, IEEE Transactions on Reliability 52 (2) (2003) 207-212. [9] J. S. Dagpunar, Simulation and Monte Carlo with Application in Finance and MCMC, John Wiley & Sons, Ltd. (2007). [10] P. Doulliez and E. Jamoulle, Transportation Networks with Random Arc Capacities, R.A.I.R.O. 3 (1972) 45-60. [11] M.C. Easton and C.K. Wong, Sequential Destruction Method for Monte Carlo Evaluation of System Reliability, IEEE Transactions on Reliability 29 (1980) 27-32. [12] T. Elperin, I.B. Gertsbakh and M. Lomonosov, An evolution model for Monte Carlo es- timation of equilibrium network renewal parameters, Probability in the Engineering and Informational Sciences 6 (1992) 457-469. [13] T. Elperin, I.B. Gertsbakh and M. Lomonosov, Estimation of network reliability using graph evolution models, IEEE Transactions on Reliability 40 (5) (1991) 572-581. [14] G. Fishman, A Comparison of Four Monte Carlo Methods for Estimating the Probability of s-t Connectedness, IEEE Transactions on Reliability 35 (1986) 145-154. [15] G. Fishman, A Monte Carlo Sampling Plan for Estimating Network Reliability, Operations Research 34 (4) (1986) 581-594. [16] G. Fishman, Estimating the s-t Reliability Function Using Importance and Stratied Sam- pling, Operations Research 37 (3) (1989) 462-473. [17] G. Fishman and T.Y.D. Shaw, Evaluating Reliability of Stochastic Flow Networks, Prob- ability in the Engineering and Informational Sciences 3 (1989) 493-509. [18] P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer-Verlag New York, Inc. (2004) 221, 227. [19] J.M. Hammersley, J.G. Mauldon, General principles of antithetic variates, Mathematical Proceedings of the Cambridge Philosophical Society, 52 (1956) 476-481. [20] K.P. Hui, N. Bean, M. Kraetzl and D.P. Kroese, The Cross-entropy Method for Network Reliability Estimation Annals of Operations Research 134 (1) (2005) 101-118. [21] R. Karp and M.G. Luby, A New Monte Carlo Method for Estimating the Failure Prob- ability of an N-component System, Computer Science Division, University of California, Berkely, 1983. [22] M. El Khadiri, G. Rubino, A Monte-Carlo method based on antithetic variates for network reliability computations, Technical Report, Institut de Recherche en Informatique et Sys- temes Aleatoires and Institut National de Recherche en Informatique et en Automatique, 626 (1992). [23] H. Kumamoto, K. Tanaka, K. Inoue and E.J. Henley, Dagger Sampling Monte Carlo for System Unavailability Evaluation, IEEE Transactions on Reliability 29 (2) (1980) 122-125. [24] H. Kumamoto, K. Tanaka, K. Inoue, Efficient evaluation of system reliability by Monte Carlo method, IEEE Transactions on Reliability, 26 (5) (1977) 311-315. [25] A. Konak, A.E. Smith and S. Kulturel-Konak, New Event-driven Sampling Techniques for Network Reliability Estimation, Proceedings of Winter Simulation Conference 2004, Washington, D.C., December 5-8, 224-231. [26] A.L. Law, D.W. Kelton, Simulation modeling and analysis, 3rd Edition, Boston: McGraw- Hill, (2000). [27] S.S. Lavenberg, P.D. Welch, A perspective on the use of control variables to increase the efficiency of Monte Carlo simulations, Management Science, 27 (1981) 322-335. [28] M. Lomonosov, On Monte Carlo estimates in network reliability, Probability in the Engi- neering and Informational Sciences, 8 (1994) 245-264. [29] B.D. Ripley, Stochastic simulation, New York: Wiley, (1987). [30] S.M. Ross, A new simulation estimator of system reliability, Journal of Applied Mathe- matics and Stochastic Analysis, 7 (3) (1994) 331-336. [31] R. Y. Rubinstein and G. Samorodnitsky, Variance Reduction by the Use of Common and Antithetic Random Variables, J. Statist. Comput. Simulation 22 (1985) 161-180. [32] P. Smith, M. Shafi and H. Gao, Quick Simulation: A Review of Importance Sampling Tech- niques in Communications Systems, IEEE Journal on Selected Areas in Communications 15 (1997) 597-613. [33] L.G. Valiant, The Complexity of Enumeration and Reliability Problems, SIAM Journal on Computing 8 (3) (1979) 410-421. [34] W.C. Yeh, A new Monte Carlo method for the network reliability, Proceedings of First International Conference on Information Technologies and Applications, (2002).
|