Arbeláez, F., &; Bouten, I. W.(2005). Applications of Artificial Neural Networks in Ecology.Thesis. Athenaeum Illustre of Amsterdam. Amsterdam.
Bertrand, S., Díaz, E., &; Lengaigne, M. (2008). Patterns in the spatial distribution of Peruvian anchovy (Engraulis ringens) revealed by spatially explicit fishing data. Progress in Oceanography, 79(2), 379-389.
Bigelow, K. A., &; Maunder, M. N. (2007). Does habitat or depth influence catch rates of pelagic species? Canadian Journal of Fisheries and Aquatic Sciences, 64(11), 1581-1594.
Bradshaw, C. J., Davis, L. S., Purvis, M., Zhou, Q., &; Benwell, G. L. (2002). Using artificial neural networks to model the suitability of coastline for breeding by New Zealand fur seals (Arctocephalus forsteri). Ecological Modelling, 148(2), 111-131.
Broomhead, D. S., &; Lowe, D. (1988). Radial basis functions, multi-variable functional interpolation and adaptive networks (No. RSRE-MEMO-4148). Royal signals and radar establishment malvern (United Kingdom).
Bryson, A. E., &; Denham, W. F. (1964). Optimal programming problems with inequality constraints. ii - solution by steepest-ascent. AIAA Journal, 2(1), 25-34.
Chang, S.-K. (2011). Application of a vessel monitoring system to advance sustainable fisheries management—Benefits received in Taiwan. Marine Policy, 35(2), 116-121.
Council of the European (2002). No 2371/2002 of 20 December 2002 on the conservation and sustainable exploitation of fisheries resources under the Common Fisheries Policy. Official Journal of the European Union, L, 358(31.12).
Council of the European (2009). No 1224/2009 of 20 November 2009 establishing a Community control system for ensuring compliance with the rules of the common fisheries policy, amending Regulations (EC) No 847/96,(EC) No 2371/2002,(EC) No 811/2004,(EC) No 768/2005,(EC) No 2115/2005,(EC) No 2166/2005,(EC) No 388/2006,(EC) No 509/2007,(EC) No 676/2007,(EC) No 1098/2007,(EC) No 1300/2008,(EC) No 1342/2008 and repealing Regulations (EEC) No 2847/93,(EC) No 1627/94 and (EC) No 1966/2006. Official Journal of the European Union, L, 343(1), 22-12.
Damanaki, M. (2013a). Negotiations for fisheries agreement protocol with Morocco, EU Press releases. Retrieved 2013.01.11, from http://ec.europa.eu/commission_2010-2014/damanaki/headlines/press-releases/2013/01/20130115-1_en.htm
Damanaki, M. (2013b). New Protocol to the Fisheries Partnership Agreement between the EU and Ivory Coast, EU Press releases. Retrieved 2013.01.09, from http://ec.europa.eu/archives/commission_2010-2014/damanaki/headlines/press-releases/2013/01/20130109-1_en.htm
Dedecker, A. P., Goethals, P. L., Gabriels, W., &; De Pauw, N. (2004). Optimization of Artificial Neural Network (ANN) model design for prediction of macroinvertebrates in the Zwalm river basin (Flanders, Belgium). Ecological Modelling, 174(1), 161-173.
Dinmore, T., Duplisea, D., Rackham, B., Maxwell, D., &; Jennings, S. (2003). Impact of a large-scale area closure on patterns of fishing disturbance and the consequences for benthic communities. ICES Journal of Marine Science: Journal du Conseil, 60(2), 371-380.
Du, W., Deng, J., Han, Y. S., Varshney, P. K., Katz, J., &; Khalili, A. (2005). A pairwise key predistribution scheme for wireless sensor networks. ACM Transactions on Information and System Security (TISSEC), 8(2), 228-258.
Džeroski, S., &; Drumm, D. (2003). Using regression trees to identify the habitat preference of the sea cucumber (Holothuria leucospilota) on Rarotonga, Cook Islands. Ecological Modelling, 170(2), 219-226.
FAO. (2001). International plan of action to prevent, deter and eliminateillegal, unreported and unregulated fishing. FAO. Rome.
FAO. (2014). The status of fishery resources. The State of World Fisheries and Aquaculture.37-41.FAO. Rome.
Gaertner, D., &; Dreyfus-Leon, M. (2004). Analysis of non-linear relationships between catch per unit effort and abundance in a tuna purse-seine fishery simulated with artificial neural networks. ICES Journal of Marine Science: Journal du Conseil, 61(5), 812-820.
Garcia, S. M. (2000). The FAO definition of sustainable development and the Code of Conduct for Responsible Fisheries: an analysis of the related principles, criteria and indicators. Marine and Freshwater Research, 51(5), 535-541.
Gerritsen, H. D., Minto, C., &; Lordan, C. (2013). How much of the seabed is impacted by mobile fishing gear? Absolute estimates from Vessel Monitoring System (VMS) point data. ICES Journal of Marine Science: Journal du Conseil, 70(3), 523-531.
Gerritsen, H.D., &; Lordan, C. (2011). Integrating vessel monitoring systems (VMS) data with daily catch data from logbooks to explore the spatial distribution of catch and effort at high resolution. ICES Journal of Marine Science: Journal du Conseil, 68(1), 245-252.
Gevrey, M., Dimopoulos, I., &; Lek, S. (2003). Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling, 160(3), 249-264.
Gonzalez-Mirelis, G., Lindegarth, M., &; Sköld, M. (2014). Using vessel monitoring system data to improve systematic conservation planning of a multiple-use marine protected area, the Kosterhavet National Park (Sweden). Ambio, 43(2), 162-174.
Hebb, D. O. (2002). The organization of behavior. John Wiley &; Sons.New York.
Hersoug, B., &; Paulsen, O. (1996). Monitoring, control and surveillance in fisheries management. University of Namibia.Windhoek.
Hintzen, N. T., Piet, G. J., &; Brunel, T. (2010). Improved estimation of trawling tracks using cubic Hermite spline interpolation of position registration data. Fisheries Research, 101(1-2), 108-115.
Hintzen, N.T., Bastardie, F., Beare, D., Piet, G. J., Ulrich, C., Deporte, N., Egekvist, J., Degel, H. (2012). VMStools: open-source software for the processing, analysis and visualisation of fisheries logbook and VMS data. Fisheries Research, 115, 31-43.
Hopfield, J. J., &; Tank, D. W. (1985). “Neural” computation of decisions in optimization problems. Biological Cybernetics, 52(3), 141-152.
Jennings, S., &; Lee, J. (2012). Defining fishing grounds with vessel monitoring system data. ICES Journal of Marine Science: Journal du Conseil, 69(1), 51-63.
Joo, R., Bertrand, S., Chaigneau, A., &; Niquen, M. (2011). Optimization of an artificial neural network for identifying fishing set positions from VMS data: an example from the Peruvian anchovy purse seine fishery. Ecological Modelling, 222(4), 1048-1059.
Lambert, G. I., Jennings, S., Hiddink, J. G., Hintzen, N. T., Hinz, H., Kaiser, M. J., &; Murray, L. G. (2012). Implications of using alternative methods of vessel monitoring system (VMS) data analysis to describe fishing activities and impacts. ICES Journal of Marine Science: Journal du Conseil, 69(4), 682-693.
Le Fevre, J. (1987). Aspects of the biology of frontal systems. Advances in Marine Biology, 23, 163-299.
Le Gallic, B., &; Cox, A. (2006). An economic analysis of illegal, unreported and unregulated (IUU) fishing: Key drivers and possible solutions. Marine Policy, 30(6), 689-695.
Lee, J., South, A. B., &; Jennings, S. (2010). Developing reliable, repeatable, and accessible methods to provide high-resolution estimates of fishing-effort distributions from vessel monitoring system (VMS) data. ICES Journal of Marine Science: Journal du Conseil, 67(6), 1260-1271.
Linderman, M., Liu, J., Qi, J., An, L., Ouyang, Z., Yang, J., &; Tan, Y. (2004). Using artificial neural networks to map the spatial distribution of understorey bamboo from remote sensing data. International Journal of Remote Sensing, 25(9), 1685-1700.
Makridakis, S. (1993). Accuracy measures: theoretical and practical concerns. International Journal of Forecasting, 9(4), 527-529.
Mills, C. M., Townsend, S. E., Jennings, S., Eastwood, P. D., &; Houghton, C. A. (2007). Estimating high resolution trawl fishing effort from satellite-based vessel monitoring system data. ICES Journal of Marine Science: Journal du Conseil, 64(2), 248-255.
Mullowney, D., &; Dawe, E. (2009). Development of performance indices for the Newfoundland and Labrador snow crab ( Chionoecetes opilio) fishery using data from a vessel monitoring system. Fisheries Research, 100(3), 248-254.
Murawski, S. A., Wigley, S. E., Fogarty, M. J., Rago, P. J., &; Mountain, D. G. (2005). Effort distribution and catch patterns adjacent to temperate MPAs. ICES Journal of Marine Science: Journal du Conseil, 62(6), 1150-1167.
Park, Y.-S., Céréghino, R., Compin, A., &; Lek, S. (2003). Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecological Modelling, 160(3), 265-280.
Piet, G. J., &; Hintzen, N. T. (2012). Indicators of fishing pressure and seafloor integrity. ICES Journal of Marine Science: Journal du Conseil, 69(10), 1850-1858.
Rijnsdorp, A., Buys, A., Storbeck, F., &; Visser, E. (1998). Micro-scale distribution of beam trawl effort in the southern North Sea between 1993 and 1996 in relation to the trawling frequency of the sea bed and the impact on benthic organisms. ICES Journal of Marine Science: Journal du Conseil, 55(3), 403-419.
Rumelhart, D. E., Hinton, G. E., &; Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536.
Russo, T., Parisi, A., Prorgi, M., Boccoli, F., Cignini, I., Tordoni, M., &; Cataudella, S. (2011). When behaviour reveals activity: Assigning fishing effort to métiers based on VMS data using artificial neural networks. Fisheries Research, 111(1–2), 53-64.
Smith, R. J., Eastwood, P. D., Ota, Y., &; Rogers, S. I. (2009). Developing best practice for using Marxan to locate marine protected areas in European waters. ICES Journal of Marine Science: Journal du Conseil, 66(1), 188-194.
Tsamenyi, B. M., &; Jaap Molenaar, E. (2000). Satellite-based vessel monitoring systems International legal aspects &; developments in state practice. Organisation FaA, United Nations.
Walker, E., &; Bez, N. (2010). A pioneer validation of a state-space model of vessel trajectories (VMS) with observers’ data. Ecological Modelling, 221(17), 2008-2017.
Walter, J. F., Hoenig, J. M., &; Gedamke, T. (2007). Correcting for effective area fished in fishery-dependent depletion estimates of abundance and capture efficiency. ICES Journal of Marine Science: Journal du Conseil, 64(9), 1760-1771.
Watson, R., &; Pauly, D. (2001). Systematic distortions in world fisheries catch trends. Nature, 414(6863), 534-536.
Witt, M. J., &; Godley, B. J. (2007). A step towards seascape scale conservation: using vessel monitoring systems (VMS) to map fishing activity. PLoS One, 2(10), e1111.
WWF-Australia. (2012). Review of the Fisheries Management Act 1991 and Fisheries Administration Act 1991. Sydney.
尹相志 (2009). SQL Server 2008 Data Mining 資料採礦. 悅知文化.臺北.
王勝平 (2007). VMS應用在沿近海漁業資源管理模式之研究. 行政院農委會漁業署委託計畫.
王富鈺 (2013). 臺灣北部海域漁業時空分析.碩士論文,國立臺灣海洋大學海洋事務與資源管理研究所,基隆.行政院農委會漁業署 (2013). 中華民國台閩地區漁業統計年報. 行政院農委會漁業署.
李國添 (1999). 本省漁船在東、黃海域作業(拖網除外)情形調查分析.行政院農委會漁業署委託計畫.
周耀烋和蘇偉成 (2002). 臺灣漁具漁法: 行政院農業委員會漁業署.臺北.
林忠宏 (2013). 節省公帑、社會正義、漁業發展 漁船航程資訊系統(Voyage Data Recorder). 國立成功大學校刊 (243) 39-41.
邱宜賢 (2007). 調整漁船用油優惠政策之執行成效. 農政與農情, 183, 49-52。柯慶麟 (2010). 20噸以上未滿100噸延繩釣漁船裝設漁船監控系統輔導措施簡介. 農政與農情, 218, 28-30.
徐鉦忠 (2010). 臺灣北部沿近海延繩釣漁業之產能與經營效益評估. 碩士論文,國立臺灣海洋大學海洋事務與資源管理研究所,基隆.張淑淨 (2013). 漁船監控系統.科技大觀園. 科技部. Retrieved 2014.09.18, from http://scitechvista.most.gov.tw/zh-tw/Articles/C/0/1/10/1/1958.htm.
張詠棨 (2007). 半徑基底函數(RBF)類神經網路應用於LED晶圓缺陷檢測.碩士論文,國立雲林科技大學資訊管理系,雲林.張裕明 (2001). 連續表面波試驗及電子震測錐試驗評估土層剪力波速─倒傳遞類神經網路.碩士論文,國立臺灣大學土木工程學研究所,臺北.許鎦響和萬絢 (2007). 整合霍普菲爾分群技術與疊代式決策樹分析高單價化妝品的潛在顧客. 計量管理期刊, 4, 119-132。
陳奇中 (2009). MATLAB在化工上之應用: 東華出版社,臺北.
陳彥君 (2011). 利用航程記錄器和漁獲日誌資料探討臺灣沿近海延繩釣漁業之作業模式.碩士論文,國立臺灣海洋大學海洋事務與資源管理研究所,基隆.曾千芬 (2009). 應用地理資訊系統探討東港拖網漁業之漁獲組成及時空特性.碩士論文,國立臺灣海洋大學環境生物與漁業科學學系,基隆.黃華山 (2005). 類神經網路預測臺灣 50股價指數之研究.碩士論文,國立彰化師範大學資訊管理學系,彰化.
楊荏婷 (2013). 談海洋資源的永續發展策略. 國政研究報告.財團法人國家政策研究基金會.
葉怡成 (2009). 類神經網路模式式應用與實作: 儒林圖書有限公司.臺北.
廖怡婷 (2009). 運用標本船動態紀錄分析漁業資源變動-以貢寮地區火誘網為例.碩士論文,國立臺灣海洋大學環境生物與漁業科學學系,基隆.管振青 (2003). 臺灣沿近海漁業減船政策之效益評估.碩士論文,國立中山大學經濟學研究所,高雄.劉坤玉和張水鍇 (1998). 漁船監控系統之發展概況. 農政與農情, 74(311), 32-36.
鄭奕、方水美和周應祺. (2008). 中國近海捕撈能力的計量分析. 漁業論壇暨現代農業與食品經濟國際學術研討會論文集, 上海.
賴繼昌、洪銘昆、楊清閔、黃建智和吳龍靜 (2012). 臺灣沿近海底拖網漁船航跡資料自動化系統架設與應用. 水試專訊(39), 1-4.
謝邦昌和邱志洲 (2000). 類神經網路分析: 曉園出版社有限公司.臺北.
謝雅吟 (2009). 利用船位及漁撈日誌資料分析臺灣西南海域中小型雙拖網漁業活動之特性.碩士論文,國立臺灣海洋大學環境生物與漁業科學學系,基隆.蘇木春和張孝德 (2004). 機器學習: 類神經網路, 模糊系統以及基因演算法則: 全華科技圖書公司.新北.