跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 01:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林益生
研究生(外文):Yi-Sheng Lin
論文名稱:高韌性奈米級WC/Co高速火焰熔射塗層之研究
論文名稱(外文):Study on The High Toughness HVOF Sprayed WC/Co Nanocermet Coatings
指導教授:蘇程裕蘇程裕引用關係
口試委員:吳貞欽林中魁
口試日期:2005-07-01
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:60
中文關鍵詞:奈米級WC/Co高速火焰熔射微硬度韌性磨耗
外文關鍵詞:Nanostructrue WC/CoHVOFHardnessToughnessWear
相關次數:
  • 被引用被引用:1
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
熔射(Thermal Spraying)技術在工業界已被廣泛的使用,而高速火焰熔射WC/Co在航空、汽車、印刷、石油化工等適用於耐腐蝕、耐磨耗及耐高溫之環境。在高速火焰熔射WC/Co製程中粉體的特性影響塗層之機械性質甚鉅,加上奈米級WC/Co粉體已能商業量產,因此高速火焰熔射奈米級WC/Co塗層已漸漸受到重視。由於奈米級WC/Co粉體較傳統微米級小相對受熱面積大,在熔射的過程中粉體溫度較高,可得到較緻密且硬度較高的塗層,但也因為其熔射的過程中粉體溫度較高,WC脫碳較嚴重形成較脆之W、W2C及非晶質相等影響塗層之機械性質。本研究使用微米級和奈米級三種不同之商業用粉末並以六種不同參數之HVOF製備WC/Co塗層,比較其各項機械性質。分析熔射前之粉末及熔射後塗層成分變化、塗層孔隙率、觀察塗層橫截面之微結構、塗層微硬度、以四點彎曲配合聲波放射試驗了解塗層之韌性並建立其破壞模型及磨耗試驗之重量損失機制探討。結果顯示奈米塗層較傳統塗層緻密、孔隙率低、硬度高且韌性較佳,但耐磨耗性卻較差。並將四點彎曲結合同步聲波放射試驗中塗層破壞分為三個階段,初期在層與層之介面生成微裂縫,第二階段型成與塗層呈一角度之微裂縫,隨著彎曲應力持續加大,除了前兩種微裂縫擴大成巨裂縫外並生成與塗層呈垂直之巨裂縫。磨耗試驗之重量損失亦可分為兩種形式。因此奈米粉末所熔射出之奈米塗層在某些特定之機械性質是有所增進但並非全部,不過這也許可以從製程參數之最佳化來獲得最適合之塗層特性。所以未來奈米粉末在商業上之應用應該是可以期待的。
Thermal spraying technology has been used in industry extensively. High velocity oxy-fuel (HVOF) process WC/Co coating is suitable for aviations, vehicles, printings and petroleum industry especially in erosions, abrasions and high temperatures environment. It is extremely important to characterize the WC/Co powder to understand the performance of the coating. Otherwise, nanostructured WC/Co powders have been succeeded commercialize so HVOF deposits nanostructured WC/Co coating has been highly regarded. Due to the surface/volume ratio of nanostructured WC/Co powder, it’s strength is greater then conventional films. The temperature of nanostructure powder during deposition is higher than conventional powders. Therefore, nanostructure WC/Co can yield a high density and high hardness coating. Nevertheless, if the temperature is higher than conventional, this can lead to nanostructured WC becoming decarbonized and brittle W, W2C and amorphous etc.
In this study six HVOF parameters were used to process three types of commercial WC/Co powders. Then the powders were analyzed to compare the characteristics of each. For instance, the powder’s property, coating’s composition, porosity, microstructure, hardness, ware lose machine and four points bending with AE to comprehend toughness were studied. The consequences show the nanostructure coating has higher density, hardness, toughness and lower porosity but wear resistance is worse than conventional coating. Divide coating crash by four points bending test into three steps, the initial step is some micro cracks which direction is parallel with surface be developed at bounding. The second step is others micro cracks which direction is angular with surface been developed. By keeping increase the bending stress, both of two kinds of micro cracks been enhanced to macro cracks and growth the other macro cracks which is vertical with surface. Otherwise, the major of wear lose machine can be divided into two types too.
Consequently, nanostructured WC/Co coating has improved in certain of mechanical performance but not all of them. But it appears possible that the desired properties may be obtained by optimizing the spraying parameters. Therefore, nanostructured WC/Co powders may soon be applied commercially.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vi
第一章 前言 1
1.1熔射製程基本原理 1
1.2高速火焰熔射之原理 3
1.3 高速火焰熔射塗層特性 4
1.4 碳化鎢/鈷粉末製程及特性 5
第二章 文獻回顧 8
2.1 WC/Co材料特性及反應模式 8
2.2微米級WC/Co粉末之熔射塗層比較 10
2.3微米級WC/Co之熔射參數比較 12
2.4奈米級WC/Co粉末之熔射塗層比較 13
2.5奈米級WC/Co粉末之熔射參數比較 14
2.6 奈米級WC/Co之熔射塗層磨耗試驗 19
2.7 熔射塗層之性質測試 22
2.7.1 聲波放射原理 22
2.7.2 機械性質檢測結合同步聲波放射試驗 23
第三章 實驗方法 25
3.1 試片準備及熔射參數 25
3.2 熔射之WC/Co 粉末 26
3.3 粉末及塗層之XRD相檢測分析 27
3.4塗層之孔隙率及微硬度試驗 27
3.5 SEM微結構觀察 27
3.6 四點彎曲試驗結合同步聲波放射試驗 28
3.7 磨耗試驗 30
第四章 結果與討論 31
4.1 粉末之微結構、形體及相分析 31
4.2 塗層相分析 32
4.3 橫截面孔隙率及微硬度之分析 37
4.4 四點彎曲試驗結合同步聲波放射試驗之分析 41
4.4.1 四點彎曲試驗結合同步聲波放射試驗 42
4.4.2 四點彎曲試驗後之微結構觀察 44
4.5 磨耗試驗後之微結構觀察 51
第五章 結論 55
參考文獻 57
[1] AWS Committee on Thermal Spraying, Thermal spraying : Practice, Theory and Application, American Welding Society, Miami, FL, 1985.
[2] Pawlowski, The Science and Engineering of Thermal Spray Coatings, John Wiley & Sons, New Tork, 1995.
[3] Scott and R. Kingswell, “Advance surface Coatings, Eds. D.S. Rickerby and A. Mattews,” Chapman and Hall, New York, 1991. pp 217-243.
[4] W. D. Hisao, I.C. Hsu, C.Y. Su, and K.M. Wu, 2001, “Dipping In Simulation Body Fluid for the Plasma Sprayed Hydroxyapitite on Peek,” Welding & Cutting, Vol. 11, No. 4, pp50-61.
[5] Vuoristo, P., Niemi, K, Maekelas, A., and Maentylae, T., Proceedings of the 1993 National Thermals Spray Conference, 1993, pp 173-178.
[6] Provot, X., Burlet, H., Vardavoulias, M., Jeandin, M., Richard, C., Lu, J., and Manesse, D., Proceedings of the 1993 National Thermal Spray Conference, 1993, pp 159-166.
[7] Schwetzke, R., and Kreye, H., Proceedings of 15th International Thermal Spray Conference, 1998, pp 187-192.
[8] 吳柏成,超音速火焰熔射技術,工業技術研究院工業材料研究所,民國81年8月。
[9] 王家瓚,耐蝕塗層應用於鍋爐管之研究,台灣電力公司電力綜合研究所大林發電廠,1993。.
[10] W.J. Jarosinski, M.F. Gruninger, and C.H. Londry, “Characterization of Tungsten Carbide Cobalt Powders and HVOF Coatings,” Proceedings of the 1993 National Thermal Spray Conference, 1993.
[11] B. K. Kear, L.E. McCandlish, Nanostructured Mater. 3, 1993. p.19.
[12] B. K. Kear, L.E. McCandlish, Nanostructured Mater. 1, 1992. p119.
[13] J. He, M. Ice, S. Dallek, E. J. Lavernia, Metall. Mater. Trans. A 31A, 2000, p541.
[14] http://www.nanopowder.co.kr.
[15] J. He, J. M. Schoenung, “A Review on Nanoatructured WC-Co Coating,” Surface and Coatings Technology 157, 2002, p72-79.
[16] M. P. Groover, Fundamentals of Modern Manufacturing, 2nd. Edition, John Wiley & Sons, Inc., 2002, pp369-370.
[17] P. Schwarzkopf and R. Kieffer, Cemented Carbides, The Macmillan Company, New York, 1960.
[18] D. Jaffrey, J. W. Lee, and J. D. Browne, Co-WC pseudobinary eutectic reaction, Powder metallurgy, No.3, 1980, pp140-144.
[19] T. Johansson and B.Uhrenius, “Phase equilibria isothermal reactions and a thermodynamic study in the Co-W-C system at 1150℃,” Metal Science, February 1978, pp83-94.
[20] J. Nerz, B. Kushner, A. Rotolico, J. Thermal Spray Technology, 1(2), 1992, pp147-152.
[21] J. He, L. Ajdelsztajn, E. J. Lavernia, J. Materials Research, 16, 2001, 478-483.
[22] B. H. Kear, R. K. Sadangi, M. Jain, R. Yao, Z, Kalman, G. Skandan, and W. E. Mayo, J. Thermal Spray Technology, 9(3), 2000, pp399-406.
[23] C. Verdon, A. Karimi, J. L. Martin, Materials Science and Engineering, A 246, 1998, pp11-24.
[24] T.C. Nerz, J.E. Nerz, B.A.Kushner, A.J.Rotolico & W.L.Riggs; Thermal spray: International advance in coatings Technology, 1992 ITSC Proceedings.
[25] M. Humenik, Jr. & T.J. Whalen, Cermats. Reinold Publishing Company, 1960.
[26] R. Kieffer; The Physics of Powder Metallurgy, Chapter 16, McGraw-Hill Book Company.1951
[27] J. Nerz, B. Kushner, A. Rotolico, J. Thermal Spray Technology, 1(2), 1992, pp147-152.
[28] M. Gruninger Class Notes from Ceramic – Metallic systems, referencing Gurland.
[29] L.E. McCandlish, B.H. Kear & B.K. Kim, “Chemical Processing of Nanophase WC-Co Composite Powders,” Materials Science & Technology, Vol. 6, 1990.
[30] R. Kieffer; The Physics of Powder Metallurgy. Chapter 16. McGraw-Hill Book Company. (1951)
[31] S.K Bhaumik, G.S. Upadhyaya & M.L. Vaidya, “Alloy Design of WC-10Co Hard Metals with Modifications in Carbide and Binder Phases.” Refractory Material & Hard Materials. 11. (1992).
[32] S.Y. Hwang, B.G.. Seong, M.C. Kim, Characterization of WC/Co Coating Using HP/HVOF Process, Thermal Spray, Partical Solutions for Engineering Problem, 1996.
[33] J. E. Nerz, B. A. Kushner, A. J. Rotolico, J. Thermal Spray Technical, 1, 1992, pp147.
[34] H. L. de Villiers Lovelock, J. Thermal Spray Technical, 7, 1998, pp357.
[35] C. Suryanarayana, International Material, Rev. 40, 1995, pp 41.
[36] B.H. Kear, P.R. Strutt, Naval Researches, Rev. 4, 1994, pp 4.
[37] B.K. Kear, L.E. McCanlish, Nanostructured Material, 3, 1993, pp19.
[38] J. He, M. Ice, E.J.Lavernia, Metallurgy Material Transaction, A , 31A, 2000, pp541.
[39] D.A. Stewart, P.H. Shipway, D.G. McCartney, Wear 225-229, 1999, pp789.
[40] J.He, Y. Liu, Y. Qiao, T.E. Fischer, E.J. Lavernia, Metallurgy Material Transaction, A, 33A, 2002, pp145.
[41] Y. Liu, Y. Qiao, J. He, T.E. Fischer, E.J. Lavernia, Metallurgy Material Transaction, A, 33A, 2002, pp159.
[42] J.E. Nerz, B.A.Kushner, A.J. Rotolico, J. Thermal Spray Technical, 1, 1992, pp147.
[43] S. Usmani, S.Sampath, H.Herman, C.C. Berndt, E.J. Lavernia, (eds.), J. Thermal Spray Technical., 7, 1998, pp429.
[44] D.A. Stewart, P.H. Shipway, D.G. McCartney, Acta Mater. 48, 2000, pp 593.
[45] P. Aroto, L. Bartha, R. Porat, S. Berger, A. Rosen, Nanostructured Material, 10, 1998, pp245.
[46] J. He, M. Ice, S. Dallek, E.J. Lavernia, Metallurgy Material Transaction, A, 31A, 2000, pp541.
[47] K. Jia, T.E. Fischer, B. Gallois, Nanostructured. Material, 10, 1998, pp875.
[48] A. Inoue, Y. Horio, Y.H. Kim, T. Masumoto, Material Transaction, Jim 33, 1992, pp669.
[49] J. He, J. M. Schoenung, Surface & Coatings Technology, 157, 2002, pp72-79.
[50] K. Jia, T. E. Fischer, Wear, 200, 1996, pp206-214.
[51] D. A. Stewart, P. H. Shipway, D. G. McCartney, Wear, 225-229, 1999, pp789-798.
[52]. J.K.N. Murthy, D.S. Rao, B. Venkataraman, Wear, 249, 2001, pp592-600.
[53] M.M. Lima, C. Godoy, P.J. Modenesi, J.C. Avelar-Batista, A. Davision, A. Matthhews, Surface and Coating Technology, 177-178, 2004, pp489-496.
[54] S. Luxenburger, W. Arnold, Ultrasonics, 40, 2002, pp797-801.
[55] D. Horn, W.R. Mayp, NDT&E International, 33, 2000, pp351-362.
[56] H.A. Crostack, W. Jahnel, E.H. Meyer, Non-Destructive Testing of Surface Coatings, 37(3), 1996, pp114-120.
[57] J.M.Miguel, J.M. Guilemany, B.G. Mellor, Y.M. Xu, Materials Sciences and Engineering A, 352, 2003, pp55-63.
[58] C.C. Berndt, Journal of Engineering for Gas Turbines and Power, 107,1985, pp142-146.
[59] N.F. Casey and P.A. A. Laura, Ocean Engineering, 24 (10), 1997, pp935-947.
[60] D.H. Kohn, P. Ducheyne, and J. Awerbuch, Journal of Biomedical Materials Research, 26, 1992, pp19-38.
[61] A. Kucuk, C.C. Berndt, U. Senturk, and R.S. Lima, Materials Science and Engineering A, 284, 2000, pp41-50.
[62] A. Rabiei, M. Enoki, and T. Kishi, Materials Science and Engineering A, 293, 2000, pp81-87.
[63] M. Belmonte, A.J.S. Femandes, F.M. Costa , F.J. Oliveira, and R.F. Silva, Diamond and Related Materials, 12, 2003, pp1744-1749.
[64] K. Vijayakumar, A.K. Shanna, M.M. Mayuram, and R. Krishnamurthy, Materials Letters, 56, 2002, pp252-262.
[65] J.R.T. Branco and S.V. Campos, Surface and Coatings Technology, 120-121, 1999, pp476-481.
[66] C.W. Cho and Y.Z. Lee, Surface and Coatings Technology, 127, 2000, pp59-65.
[67] A.L. Quadro and J.R.T. Branco, Surface and Coatings Technology, 94-95, 1997, pp691-695.
[68] X.Q. Ma and M. Takemoto, Materials Science and Engineering A, 308, 2001, pp101-110.
[69] M. Saadaoui and G. Fantozzi, Materials Science and Engineering A, 2 47, 1998, pp142-151.
[70] J. Voyer, F. Gitzhofer, and M.I. Boulos, Journal of Thermal Spray Technology, 7(2), 1998, pp181-190.
[71] Qiao, Y., Fischer, T. E. and Dent, A., Surface and Coatings Technology, 172, 2003, pp 24-41.
[72] 葉俊傑,高速火焰熔射碳化鎢/鈷塗層之特性研究,逢甲大學材料科學與工程研究所,民國九十三年七月。
[73] R.K Schmid, A.R. Nicoll, Sulzer Technical Review 1.1990, pp 17-19.
[74] D.Chaunxian, H. Bingtang, L. Huiling, Thin Solid Films 118. 1984, pp 485-493.
[75] L. Jacobs, M. Hyland, M, De Bonte, Proceeding of the 15th Internation Thermal Spray Conference, 5.1998, pp 25-29.
[76] H.J. Kim, Y.G. Kweon, R.W. Chang, Journal of Thermal Spray Technology 3. 1994, pp 169-177.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王世燁、詹益寧,1992,台灣原住民建築與風土之相關性初探,華岡工程學報,第6期,pp.193~230。
2. 王世燁、賴怡君,2002,生活的樂園─從音樂觀點探討都市空間規劃理念,土地問題研究季刊,第1卷第4期,pp.52~61。
3. 王世燁、謝怡翎,2005,建立台灣國土海拔高度管制線構想之研究,土地問題研究季刊,第4卷第1期,pp.19~31。
4. 吳心浩、李文汕、張武男,1999,不同海拔穴盤苗齡對番茄生育之影響,興大園藝,第24卷第3期,pp.29~40。
5. 洪明瑞、張吉佐、黃俊鴻、張惠文,2000,對台灣山坡地開發應有的認知,現代營建,第21卷第3期。
6. 高偉峰、胡勝川、李建賢,1995,高山症,臨床醫學,第36期,pp.35-50。
7. 許咨民,1997,台灣地區山地鄉分布概況及人口特性分析,中國統計通訊,第8卷第11期,pp.29~36。
8. 馮鑑淮等,1993,海拔高度與茶樹採適週期﹑芽葉農藝性狀及包種茶品質的影響研究,臺灣茶業研究彙報,第12期,pp.47~64。
9. 葉明峰、邱健介、李德旺,2000,清水溪魚類族群與海拔高度及溪流坡度之關係,特有生物研究,第2期,pp.34~43。
10. 劉炯錫,1999,回歸自然原住民文化是明燈,大自然,第65期,pp.12~19。
11. 顏愛靜,2000,現階段原住民保留地管理問題與對策之研析,國立政治大學學報,第80期,pp.57~104。
12. 蘇鴻傑,1987,森林生育地因子及其定量評估,中華林學季刊,第20期第1卷。