跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 02:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳韻庭
研究生(外文):CHEN, YUN-TING
論文名稱:咪唑和環胺系列離子液體與高分子複合電解質在電致變色元件之研究
論文名稱(外文):Study of imidazolium- and cyclic ammonium-based ionic liquids and polymer composite electrolytes and their applications in electrochromic divices
指導教授:吳知易
指導教授(外文):WU, TZI-YI
口試委員:郭仲文林淵淙粘譽薰
口試委員(外文):KUO, CHUNG-WENLIN, YUAN-CHUNGNIEN, YU-HSUN
口試日期:2016-07-20
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:132
中文關鍵詞:離子液體電致變色元件高分子電解質
外文關鍵詞:ionic liquidelectrochromic devicepolymer electrolyte
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本實驗中合成出八種離子液體,包含四種咪唑系列離子液體以及四種環胺系列離子液體,經由核磁共振分析確定結構。藉由黏度、密度管及導電度計量測其物理性質。並經由熱重分析儀和微差熱掃描卡計分別量測離子液體的熱裂解溫度與相轉移峰。
將八種離子液體各別摻混高分子和塑化劑,均勻混和、塗佈於玻璃上,抽離溶劑製成高分子電解質膜。取膜以恆電位儀測試膜導電度,以摻混Pyr3NO製成的高分子電解質膜之膜導電性最佳,在393.15K下可達3.22×10-3 S cm-1。
使用tris[4-(2-thienyl) phenyl]amine (TTPA) 和 3,6-di(thiophen-2-yl)-9H- carbazole(BTC) 共聚物為陽極材料 ; 陰極選用3,3-diethyl-3,4-dihydro-2H-thieno-
[3,4-b][1,4]dioxepine (PProDOT-Et2),將高分子電解質各別置於兩電極中,組裝成電致變色元件。
最後使用恆電位儀與紫外光/可見光光譜儀,觀察其穿透度差值、穩定性、轉換時間、著色效率及光學記憶。而離子液體Aze4NO所製成的元件具有最大的光學對比差,約達40.0%。

Four imidazolium-based and four cyclic ammonium-based ionic liquids (ILs) are synthesized, and they are identified using NMR. The physicochemical properties of ILs are characterized using viscometer, dilatometer, and conductivity meter. The thermal decomposition temperatures and phase transition peaks are determined using thermogravimetric analyzer and differential scanning calorimeter.
The eight ILs / polymer composite electrolytes are prepared using solution-casting method. Each IL, polymer, plasticizer, and solvent are stirred for couple hours, the mixture is coated on the glass and vacuum-dried to eliminate solvent thoroughly. The conductivity of Pyr3NO/polymer composite electrolyte film shows the best conductivity, which is 3.22×10-3 S cm-1 at 393.15K.
Electrochromic devices (ECDs) employ poly (TTPA-co-BTC) as anodic material, poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]dioxepine) (PProDOT-Et2) as cathodic material, and IL / polymer composite electrolyte as the separator between two electrodes are constructed.
The optical contrast, stability, switching time, coloration efficiency, and optical memory of ECDs are characterized using a potentiostat and a UV-visible spectrophotometer Among eight ECDs, poly (TTPA-co-BTC) / Aze4NO-polymer composite / PProDOT-Et2 ECD shows the highest optical contrast, and ΔTmax of the ECD is ca. 40%.

摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 viii
第一章 序論 1
1-1前言 1
1-2 研究動機 3
第二章 論文回顧 4
2-1離子液體 4
2-1-1離子液體簡介 4
2-1-2離子液體基本性質 5
2-1-2-1密度(Density) 6
2-1-2-2 黏度(Viscosity) 6
2-1-2-3 導電度 (Conductivity) 6
2-1-3 離子液體應用 7
2-2 高分子電解質 8
2-2-1高分子電解質種類 8
2-2-1-1 固態電解質 (Solid polymer electrolyte) 9
2-2-1-2 膠態電解質 (Gel polymer electrolyte) 9
2-2-1-3 聚電解質 (Polyelectrolyte) 10
2-3 電致變色 11
2-3-1 電致變色元件 11
2-3-2 電致變色材料 12
2-3-3電致變色應用領域 15
第三章 實驗設備與方法 17
3-1 實驗流程圖 17
3-2 實驗藥品種類及合成步驟 18
3-2-1實驗藥品 18
3-2-2合成步驟 20
3-3 實驗設備 30
3-3-1離子液體之基本性質檢測 30
3-3-1-1密度測量 31
3-3-1-2黏度測量 31
3-3-1-3 導電度測量 32
3-3-1-4熱重分析儀 (TGA) 33
3-3-1-5微差熱掃描卡計分析儀 (DSC) 33
3-3-3電化學及光化學檢測 33
3-4 製備高分子電解質 34
3-4-1 實驗藥品 34
3-4-2 高分子電解質之合成 34
3-4-3 高分子電解質膜之導電度測量 35
3-5 電極之製備 36
3-6 電化學與光學性質測試 36
第四章 結果與討論 38
4-1 離子液體基本性質 38
4-1-1 密度 38
4-1-2 黏度 40
4-1-3 導電度 44
4-1-4 摩爾導電度 47
4-1-5 Walden plot 50
4-2 離子液體之熱性質分析 51
4-2-1 TGA 51
4-2-2 DSC 52
4-3 高分子電解質之特性分析 53
4-3-1 膜穿透度 53
4-3-2 膜導電度 54
4-4 聚合高分子共聚 57
4-4-1共聚膜起始電位 57
4-4-2 共聚膜光學吸收 59
4-4-3 共聚膜方波圖 61
4-5 電致變色元件性質分析 64
4-5-1元件不同電位下UV-vis光學吸收與CIE色座標分析 64
4-5-2元件方波圖分析 82
4-5-3元件著色效率分析 91
4-5-4元件穩定性分析 94
4-5-5 元件光學記憶分析 100
第五章 結論 105
參考文獻 107
附錄 112

[1] T.H. Chang, C.W. Hu, S.Y. Kao, C.W. Kung, H.W. Chen, K.C. Ho, An all-organic solid-state electrochromic device containing poly(vinylidene fluoride-co-hexafluoropropylene), succinonitrile, and ionic liquid, Sol. Energ. Mat. Sol. Cells, 143 (2015) 606-612.
[2] A. Stark, Ionic liquids in the biorefinery: a critical assessment of their potential, Energy Environ. Sci., 4 (2011) 19-32.
[3](A) P. Walden, Bull. Acad. Imper. Sci. (St. Petersburg), 1914, 1800; (B)S. Sugden, H. Wilkins, J. Chem. Soc., 1929, 1291.
[4] H.L. Chum, V.R. Koch, L. L. Miller, R.A. Osteryoung, Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt, J. Am. Chem. Soc., 97 (1975) 3264-3265.
[5] M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid
materials for the electrochemical challenges of the future, Nature Materials, 8 (2009) 621-629.
[6] 梁家維,Study of the solubility and acetylation reaction of rice hulls in ionic Liquids, 南台科技大學研究所碩士論文 (2015).
[7] M. Hilder, G.M.A. Girard, K. Whitbread, S. Zavorine, M. Moser, D. Nucciarone,
M. Forsyth, D.R. MacFarlane, P.C. Howlett, Physicochemical characterization of a new family of small alkyl phosphonium imide ionic liquids, Electrochim. Acta, 202 (2016) 100-109.
[8] R.P. Swatloski, J.D. Holbrey, R.D. Rogers, Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate, Green Chem., 5 (2003) 361.
[9] C. Yue, D. Fang, L. Liu, T.-F. Yi, Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions, J. Mol. Liq., 163 (2011) 99-121.
[10] M. Ramdin, T.W. de Loos, T.J.H. Vlugt, State-of-the-art of CO2 capture with
ionic liquids, Industrial & Engineering Chemistry Research, 51 (2012) 8149-8177.
[11] K.R. Seddon, A. Stark, M.-J. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids, Pure Appl. Chem., 72 (2000) 2275.
[12] A.P. Abbott, G. Frisch, J. Hartley, K.S. Ryder, Processing of metals and metal oxides using ionic liquids, Green Chem., 13 (2011) 471.


[13] M. Suleman, Y. Kumar, S.A. Hashmi, Structural and electrochemical properties of succinonitrile-based gel polymer electrolytes: role of ionic liquid addition, J. Phys. Chem. B, 117 (2013) 7436-7443.
[14] R.F. de Souza, J.C. Padilha, R.S. Gonçalves, J. Dupont, Room temperature
dialkylimidazolium ionic liquid-based fuel cells, Electrochem. Commun., 5 (2003) 728-731.
[15] 陳韋林,Synthesis and physicochemical characterization of asymmetric dicationic ionic liquids and cyclic ammonium based ionic liquids, 成功大學碩士論文 (2012).
[16] P. Wasserscheid , W. Keim, Angew, Ionic Liquids –New “Solutions” for transition metal catalysis, Angew Chem, Int. Ed . Engl., 39 (2000), 3772 -3789.
[17] T.Y. Wu, S.G. Su, S.T. Gung, M.W. Lin, Y.C. Lin, C.A. Lai, I.W. Sun, Ionic liquids containing an alkyl sulfate group as potential electrolytes, Electrochim. Acta, 55 (2010) 4475-4482.
[18] T.Y. Wu, S.G. Su, H.P. Wang, I.W. Sun, Glycine-based ionic liquids as potential electrolyte for electrochemical studies of organometallic and organic redox couples, Electrochem. Commun., 13 (2011) 237-241.
[19] 李孟玲, Carbon dioxide capture with tetra-alkyl-ammonium amino acid ionic liquid aqueous solution, 清華大學碩士論文 (2015).
[20] Z. Li, Q. Wei, R. Yuan, X. Zhou, H. Liu, H. Shan, Q. Song, A new room temperature ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate as a solvent for extraction and preconcentration of mercury with determination by cold vapor atomic absorption spectrometry, Talanta, 71 (2007) 68-72.
[21] A.E. Visser, R.P. Swatloski, R.D. Rogers, pH-Dependent partitioning in room temperature ionic liquids provides a link to traditional solvent extraction behavior, Green Chem., 2 (2000) 1-4.
[22] R. Vijayaraghavan, N. Vedaraman, M. Surianarayanan, D.R. MacFarlane, Extraction and recovery of azo dyes into an ionic liquid, Talanta, 69 (2006) 1059-1062.
[23] J.F. Liu, G.B. Jiang, Y.G. Chi, Y. Cai, Q. Zhou, J.T. Hu, Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons, Anal. Chem., 75 (2003) 5870-5876.
[24] I. M. AlNashef, M. L. Leonard, M. C. Kittle, M. A. Matthews, J. W. Weidner, Electrochemical generation of superoxide in room-temperature ionic liquids, Electrochem. Solid-State Lett., 4 (2001) 16-18.
[25] I.M. AlNashef, M.L. Leonard, M.A. Matthews, J.W. Weidner, Superoxide electrochemistry in an ionic liquid, Ind. Eng. Chem. Res., 41 (2002) 4475-4478.

[26] M.C. Buzzeo, C. Hardacre, R.G. Compton, Use of room temperature ionic liquids in gas sensor design, Anal. Chem., 76 (2004) 4583-4588.
[27] D. Giovanelli, M.C. Buzzeo, N.S. Lawrence, C. Hardacre, K.R. Seddon, R.G. Compton, Determination of ammonia based on the electro-oxidation of hydroquinone in dimethylformamide or in the room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, Talanta, 62 (2004) 904-911.
[28] R.P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Rogers, Dissolution of Cellose with Ionic Liquids, J. Am. Chem. Soc., 124 (2002) 4974–4975.
[29] 朱翊禎, The application of deep eutectic solvents and organic electrolytes for EDLCs and DSSCs, 清華大學碩士論文 (2011).
[30] M. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara, Y. Ito, Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors, J. Electrochem. Soc., 150 (2003) A499.
[31] A. Lewandowski, M. Galiński, Carbon–ionic liquid double-layer capacitors, J. Phys. Chem. Sol., 65 (2004) 281-286.
[32] B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, G. Wang, Y. Yang, Room temperature molten salt as electrolyte for carbon nanotube-based electric double layer capacitors, J. Power Sources, 158 (2006) 773-778.
[33] P.B. Balbuena, Y. Wang, Lithium-ion batteries: Solid-electrolyte interphase, Imperial College Press, (2004).
[34] 馮信為, Maleic anhydride modified atactic polypropylene for gel polymer electrolytes of lithium ion batteries, 成功大學碩士論文 (2015).
[35] A. Manuel Stephan, Review on gel polymer electrolytes for lithium batteries, Eur. Polym. J, 42 (2006) 21-42.
[36] 黃雅鈴, Nano-TiO2 composite polymer electrolytes, 中央大學碩士論文 (2001).
[37] P. Wang, S.M. Zakeeruddin, I. Exnar, M. Grätzel, High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte, Chem. Commun., (2002) 2972-2973.
[38] K.M. Abraham, M. Alamgir Ambient temperature rechargeable polymer-electrolyte batteries, J. Power Sources, 43-44 (1993) 195-208.
[39] 侯武桓, Study on the comb-like polymer electrolyte with polar group, 成功大學學位論文 (2004).
[40] A. Stephan, T. Manuel, R. Thirunakaran, N.G. Renganathan, V. Sundaram, S. Pitchumani, N. Muniyandi, R. Gangadharan, P. Ramamoorthy, A study on polymer blend electrolyte based on PVCrPMMA with lithium salt J. Power Sources, 81-82(1999) 752-758.
[41] J.K. Park, "Principles and applications of lithium secondary Batteries", Wiley-VCH, Weinheim, Germany, (2012).
[42] 高守辰, Performance enhancement of gel-state Dye-sensitized solar cells by composition regulations of gel-state electrolytes, 成功大學碩士論文 (2012).
[43] 宋明恩, Effect of multivalent salt on polyelectrolyte solution, 中央大學碩士論文 (2006).
[44] J.R. Platt, Electrochromism, a possible change of color producible in dyes by an electric field, J. Chem. Phys., 34 (1961) 862-864.
[45] S.K. Deb, A novel electrophotographic system, Appl. Opt., 3 (1969) 192-195.
[46] P.R. Somani, S. Radhakrishnan Electrochromic materials and devices: present and future, Mater. Chem. Phys., 77 (2002) 117–133.
[47] H. Hu, Optical and electrical responses of polymeric electrochromic devices: effect of polyacid incorporation in polyaniline film, Solid State Ionics, 161 (2003) 165-172.
[48] 姜駿彥, Effect of ionic liquids on electrochromic properties of poly(3,4-ethylenedioxythiophene) film, 成功大學碩士論文 (2013).
[49] P.R. Somani, S. Radhakrishnan, Electrochromic materials and devices: present and future, Mater. Chem. Phys., 77 (2002) 117–133.
[50] 林文仁, Synthesis and properties of PEDOT:polyelectrolyte composites using electropolymerization, 高雄應用科技大學碩士論文 (2011).
[51] M. Ouyang, P. Wang, W. Yu, S. Huang, J. Sun, B. Hu, X. Lv, Z. Fu, C. Zhang, Ferrocene-functionalized poly(6-(3,6-di(thiophen-2-yl)-9H-carbazol-9-yl)-hexyl ferrocenecarboxylate): Effect of the ferrocene on electrochromic properties, J. Electrochem. Soc., 161 (2014) H337-H342.
[52] X. Cheng, J. Zhao, C. Cui, Y. Fu, X. Zhang, Star-shaped conjugated systems derived from thienyl-derivatized poly(triphenylamine)s as active materials for electrochromic devices, J. Electroanal. Chem., 677-680 (2012) 24-30.
[53] J.H. Huang, C.Y. Hsu, C.W. Hu, C.W. Chu, K.C. Ho, The influence of charge trapping on the electrochromic performance of poly(3,4-alkylenedioxythiophene) derivatives, ACS Appl. Mat. Interface, 2 (2010) 351-359.
[54] http://www.archiexpo.cn/prod/sageglass/product-65600-1264333.html (Sage glass公司官方網站).
[55] http://www.gentex.com/zh-hant/node/273 (gentex公司官方網站)
[56] H.C. Moon, T.P. Lodge, C.D. Frisbie, Solution Processable, Electrochromic Ion Gels for Sub-1 V, Flexible Displays on Plastic, Chem. Mater., 27 (2015) 1420-1425.
[57] H. Ohno, M. Yoshizawa, W. Ogihara, A new type of polymer gel electrolyte: zwitterionic liquid/polar polymer mixture, Electrochim. Acta, 48 (2003) 2079-2083.
[58] http://www.eutechinst.com/pdt-para-conductivity-cyberscancon510.html
(Thermo Fisher 公司官方網站).
[59] K.S. Kim, S.-Y. Park, S.H. Yeon, H. Lee, N-Butyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide–PVdF(HFP) gel electrolytes, Electrochim. Acta, 50 (2005) 5673-5678.
[60] K.S. Kim, S.-Y. Park, S. Choi, H. Lee, Ionic liquid–polymer gel electrolytes based on morpholinium salt and PVdF(HFP) copolymer, J. Power Sources, 155 (2006) 385-390.
[61] T.Y. Wu, L. Hao, C.W. Kuo, Y.C. Lin, S.G. Su, P.L. Kuo, I.W. Sun, Ionic conductivity and diffusion in lithium tetrafluoroborate-doped 1-methyl-3-pentylimidazolium tetrafluoroborate ionic liquid, Int. J. Electrochem. Sci, 7 (2012) 2047 – 2064.
[62] T.-Y. Wu, S.-G. Su, Y.-C. Lin, H.P. Wang, M.-W. Lin, S.-T. Gung, I.W. Sun, Electrochemical and physicochemical properties of cyclic amine-based Brønsted acidic ionic liquids, Electrochim. Acta, 56 (2010) 853-862.
[63] K. Ghandi, A review of ionic liquids, their limits and applications, Green Sustainable Chem., 4 (2014) 44–53.
[64] Y. Hao, J. Peng, S. Hu, J. Li, M. Zhai, Thermal decomposition of allyl-imidazolium-based ionic liquid studied by TGA–MS analysis and DFT calculations, Thermochim. Acta, 501 (2010) 78-83.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊