|
[1] T.H. Chang, C.W. Hu, S.Y. Kao, C.W. Kung, H.W. Chen, K.C. Ho, An all-organic solid-state electrochromic device containing poly(vinylidene fluoride-co-hexafluoropropylene), succinonitrile, and ionic liquid, Sol. Energ. Mat. Sol. Cells, 143 (2015) 606-612. [2] A. Stark, Ionic liquids in the biorefinery: a critical assessment of their potential, Energy Environ. Sci., 4 (2011) 19-32. [3](A) P. Walden, Bull. Acad. Imper. Sci. (St. Petersburg), 1914, 1800; (B)S. Sugden, H. Wilkins, J. Chem. Soc., 1929, 1291. [4] H.L. Chum, V.R. Koch, L. L. Miller, R.A. Osteryoung, Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt, J. Am. Chem. Soc., 97 (1975) 3264-3265. [5] M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nature Materials, 8 (2009) 621-629. [6] 梁家維,Study of the solubility and acetylation reaction of rice hulls in ionic Liquids, 南台科技大學研究所碩士論文 (2015). [7] M. Hilder, G.M.A. Girard, K. Whitbread, S. Zavorine, M. Moser, D. Nucciarone, M. Forsyth, D.R. MacFarlane, P.C. Howlett, Physicochemical characterization of a new family of small alkyl phosphonium imide ionic liquids, Electrochim. Acta, 202 (2016) 100-109. [8] R.P. Swatloski, J.D. Holbrey, R.D. Rogers, Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate, Green Chem., 5 (2003) 361. [9] C. Yue, D. Fang, L. Liu, T.-F. Yi, Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions, J. Mol. Liq., 163 (2011) 99-121. [10] M. Ramdin, T.W. de Loos, T.J.H. Vlugt, State-of-the-art of CO2 capture with ionic liquids, Industrial & Engineering Chemistry Research, 51 (2012) 8149-8177. [11] K.R. Seddon, A. Stark, M.-J. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids, Pure Appl. Chem., 72 (2000) 2275. [12] A.P. Abbott, G. Frisch, J. Hartley, K.S. Ryder, Processing of metals and metal oxides using ionic liquids, Green Chem., 13 (2011) 471.
[13] M. Suleman, Y. Kumar, S.A. Hashmi, Structural and electrochemical properties of succinonitrile-based gel polymer electrolytes: role of ionic liquid addition, J. Phys. Chem. B, 117 (2013) 7436-7443. [14] R.F. de Souza, J.C. Padilha, R.S. Gonçalves, J. Dupont, Room temperature dialkylimidazolium ionic liquid-based fuel cells, Electrochem. Commun., 5 (2003) 728-731. [15] 陳韋林,Synthesis and physicochemical characterization of asymmetric dicationic ionic liquids and cyclic ammonium based ionic liquids, 成功大學碩士論文 (2012). [16] P. Wasserscheid , W. Keim, Angew, Ionic Liquids –New “Solutions” for transition metal catalysis, Angew Chem, Int. Ed . Engl., 39 (2000), 3772 -3789. [17] T.Y. Wu, S.G. Su, S.T. Gung, M.W. Lin, Y.C. Lin, C.A. Lai, I.W. Sun, Ionic liquids containing an alkyl sulfate group as potential electrolytes, Electrochim. Acta, 55 (2010) 4475-4482. [18] T.Y. Wu, S.G. Su, H.P. Wang, I.W. Sun, Glycine-based ionic liquids as potential electrolyte for electrochemical studies of organometallic and organic redox couples, Electrochem. Commun., 13 (2011) 237-241. [19] 李孟玲, Carbon dioxide capture with tetra-alkyl-ammonium amino acid ionic liquid aqueous solution, 清華大學碩士論文 (2015). [20] Z. Li, Q. Wei, R. Yuan, X. Zhou, H. Liu, H. Shan, Q. Song, A new room temperature ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate as a solvent for extraction and preconcentration of mercury with determination by cold vapor atomic absorption spectrometry, Talanta, 71 (2007) 68-72. [21] A.E. Visser, R.P. Swatloski, R.D. Rogers, pH-Dependent partitioning in room temperature ionic liquids provides a link to traditional solvent extraction behavior, Green Chem., 2 (2000) 1-4. [22] R. Vijayaraghavan, N. Vedaraman, M. Surianarayanan, D.R. MacFarlane, Extraction and recovery of azo dyes into an ionic liquid, Talanta, 69 (2006) 1059-1062. [23] J.F. Liu, G.B. Jiang, Y.G. Chi, Y. Cai, Q. Zhou, J.T. Hu, Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons, Anal. Chem., 75 (2003) 5870-5876. [24] I. M. AlNashef, M. L. Leonard, M. C. Kittle, M. A. Matthews, J. W. Weidner, Electrochemical generation of superoxide in room-temperature ionic liquids, Electrochem. Solid-State Lett., 4 (2001) 16-18. [25] I.M. AlNashef, M.L. Leonard, M.A. Matthews, J.W. Weidner, Superoxide electrochemistry in an ionic liquid, Ind. Eng. Chem. Res., 41 (2002) 4475-4478.
[26] M.C. Buzzeo, C. Hardacre, R.G. Compton, Use of room temperature ionic liquids in gas sensor design, Anal. Chem., 76 (2004) 4583-4588. [27] D. Giovanelli, M.C. Buzzeo, N.S. Lawrence, C. Hardacre, K.R. Seddon, R.G. Compton, Determination of ammonia based on the electro-oxidation of hydroquinone in dimethylformamide or in the room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, Talanta, 62 (2004) 904-911. [28] R.P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Rogers, Dissolution of Cellose with Ionic Liquids, J. Am. Chem. Soc., 124 (2002) 4974–4975. [29] 朱翊禎, The application of deep eutectic solvents and organic electrolytes for EDLCs and DSSCs, 清華大學碩士論文 (2011). [30] M. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara, Y. Ito, Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors, J. Electrochem. Soc., 150 (2003) A499. [31] A. Lewandowski, M. Galiński, Carbon–ionic liquid double-layer capacitors, J. Phys. Chem. Sol., 65 (2004) 281-286. [32] B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, G. Wang, Y. Yang, Room temperature molten salt as electrolyte for carbon nanotube-based electric double layer capacitors, J. Power Sources, 158 (2006) 773-778. [33] P.B. Balbuena, Y. Wang, Lithium-ion batteries: Solid-electrolyte interphase, Imperial College Press, (2004). [34] 馮信為, Maleic anhydride modified atactic polypropylene for gel polymer electrolytes of lithium ion batteries, 成功大學碩士論文 (2015). [35] A. Manuel Stephan, Review on gel polymer electrolytes for lithium batteries, Eur. Polym. J, 42 (2006) 21-42. [36] 黃雅鈴, Nano-TiO2 composite polymer electrolytes, 中央大學碩士論文 (2001). [37] P. Wang, S.M. Zakeeruddin, I. Exnar, M. Grätzel, High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte, Chem. Commun., (2002) 2972-2973. [38] K.M. Abraham, M. Alamgir Ambient temperature rechargeable polymer-electrolyte batteries, J. Power Sources, 43-44 (1993) 195-208. [39] 侯武桓, Study on the comb-like polymer electrolyte with polar group, 成功大學學位論文 (2004). [40] A. Stephan, T. Manuel, R. Thirunakaran, N.G. Renganathan, V. Sundaram, S. Pitchumani, N. Muniyandi, R. Gangadharan, P. Ramamoorthy, A study on polymer blend electrolyte based on PVCrPMMA with lithium salt J. Power Sources, 81-82(1999) 752-758. [41] J.K. Park, "Principles and applications of lithium secondary Batteries", Wiley-VCH, Weinheim, Germany, (2012). [42] 高守辰, Performance enhancement of gel-state Dye-sensitized solar cells by composition regulations of gel-state electrolytes, 成功大學碩士論文 (2012). [43] 宋明恩, Effect of multivalent salt on polyelectrolyte solution, 中央大學碩士論文 (2006). [44] J.R. Platt, Electrochromism, a possible change of color producible in dyes by an electric field, J. Chem. Phys., 34 (1961) 862-864. [45] S.K. Deb, A novel electrophotographic system, Appl. Opt., 3 (1969) 192-195. [46] P.R. Somani, S. Radhakrishnan Electrochromic materials and devices: present and future, Mater. Chem. Phys., 77 (2002) 117–133. [47] H. Hu, Optical and electrical responses of polymeric electrochromic devices: effect of polyacid incorporation in polyaniline film, Solid State Ionics, 161 (2003) 165-172. [48] 姜駿彥, Effect of ionic liquids on electrochromic properties of poly(3,4-ethylenedioxythiophene) film, 成功大學碩士論文 (2013). [49] P.R. Somani, S. Radhakrishnan, Electrochromic materials and devices: present and future, Mater. Chem. Phys., 77 (2002) 117–133. [50] 林文仁, Synthesis and properties of PEDOT:polyelectrolyte composites using electropolymerization, 高雄應用科技大學碩士論文 (2011). [51] M. Ouyang, P. Wang, W. Yu, S. Huang, J. Sun, B. Hu, X. Lv, Z. Fu, C. Zhang, Ferrocene-functionalized poly(6-(3,6-di(thiophen-2-yl)-9H-carbazol-9-yl)-hexyl ferrocenecarboxylate): Effect of the ferrocene on electrochromic properties, J. Electrochem. Soc., 161 (2014) H337-H342. [52] X. Cheng, J. Zhao, C. Cui, Y. Fu, X. Zhang, Star-shaped conjugated systems derived from thienyl-derivatized poly(triphenylamine)s as active materials for electrochromic devices, J. Electroanal. Chem., 677-680 (2012) 24-30. [53] J.H. Huang, C.Y. Hsu, C.W. Hu, C.W. Chu, K.C. Ho, The influence of charge trapping on the electrochromic performance of poly(3,4-alkylenedioxythiophene) derivatives, ACS Appl. Mat. Interface, 2 (2010) 351-359. [54] http://www.archiexpo.cn/prod/sageglass/product-65600-1264333.html (Sage glass公司官方網站). [55] http://www.gentex.com/zh-hant/node/273 (gentex公司官方網站) [56] H.C. Moon, T.P. Lodge, C.D. Frisbie, Solution Processable, Electrochromic Ion Gels for Sub-1 V, Flexible Displays on Plastic, Chem. Mater., 27 (2015) 1420-1425. [57] H. Ohno, M. Yoshizawa, W. Ogihara, A new type of polymer gel electrolyte: zwitterionic liquid/polar polymer mixture, Electrochim. Acta, 48 (2003) 2079-2083. [58] http://www.eutechinst.com/pdt-para-conductivity-cyberscancon510.html (Thermo Fisher 公司官方網站). [59] K.S. Kim, S.-Y. Park, S.H. Yeon, H. Lee, N-Butyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide–PVdF(HFP) gel electrolytes, Electrochim. Acta, 50 (2005) 5673-5678. [60] K.S. Kim, S.-Y. Park, S. Choi, H. Lee, Ionic liquid–polymer gel electrolytes based on morpholinium salt and PVdF(HFP) copolymer, J. Power Sources, 155 (2006) 385-390. [61] T.Y. Wu, L. Hao, C.W. Kuo, Y.C. Lin, S.G. Su, P.L. Kuo, I.W. Sun, Ionic conductivity and diffusion in lithium tetrafluoroborate-doped 1-methyl-3-pentylimidazolium tetrafluoroborate ionic liquid, Int. J. Electrochem. Sci, 7 (2012) 2047 – 2064. [62] T.-Y. Wu, S.-G. Su, Y.-C. Lin, H.P. Wang, M.-W. Lin, S.-T. Gung, I.W. Sun, Electrochemical and physicochemical properties of cyclic amine-based Brønsted acidic ionic liquids, Electrochim. Acta, 56 (2010) 853-862. [63] K. Ghandi, A review of ionic liquids, their limits and applications, Green Sustainable Chem., 4 (2014) 44–53. [64] Y. Hao, J. Peng, S. Hu, J. Li, M. Zhai, Thermal decomposition of allyl-imidazolium-based ionic liquid studied by TGA–MS analysis and DFT calculations, Thermochim. Acta, 501 (2010) 78-83.
|